ON TRIVIAL EXTENSIONS WHICH ARE QUASI-FROBENIUS ONES

By

Kazuhiko HIRATA

Recently Y. Kitamura has characterized a trivial extension which is a Frobenius extension in [2]. In this paper we characterize a trivial extension which is a quasi-Frobenius extension.

Let R be a ring with an identity and M an (R, R)-bimodule. The trivial extension S=(R, M) of R by M is the direct sum of additive groups R and M with the multiplication $(r_1, m_1)(r_2, m_2)=(r_1r_2, r_1m_2+m_1r_2)$ for $(r_i, m_i)\in S$. S is a ring containing R with the identification $r \to (r, 0)$ for $r \in R$. Let *S be the dual space of S as a left R-module. Then *S is isomorphic to the direct sum of R and *M= Hom $(_RM, _RR): *S=[R, *M]$. The action of an element $[a, h]\in *S$ on S is given by [a, h]((r, m))=ra+h(m) for $(r, m)\in S$. *S has the structure of an (S, R)-bimodule. This is given by (r, m)[a, h]=[ra+h(m), rh] and [a, h]r=[ar, hr] for $(r, m)\in S$, $[a, h]\in *S$ and $r \in R$.

Following to [3] a ring extension S over R is called a left quasi-Frobenius extension when S is left R-finitely generated projective and a direct summand of a finite direct sum of *S as an (S, R)-bimodule.

Let S be the trivial extension of R by M, and assume that S is a left quasi-Frobenius extension of R. Then there exist (S, R)-homomorphisms $\Phi: S \rightarrow *S \oplus \cdots \oplus *S$ and $\Psi: *S \oplus \cdots \oplus *S \rightarrow S$ such that $\Psi \circ \Phi = 1_S$. Let $\Phi((1, 0)) = ([a_1, h_1], \cdots, [a_n, h_n])$. Then it is easily seen that h_i is contained in Hom $(_RM_R, _RR_R)$ for all *i*. Next, we consider homomorphisms from *S to S. Since S is left R-finitely generated projective, we have following isomorphisms

> Hom $({}_{S}*S_{R}, {}_{S}S_{R}) =$ Hom $({}_{S}$ Hom $({}_{R}S, {}_{R}R)_{R}, {}_{S}S_{R})$ $\cong \{$ Hom $(R_{R}, S_{R}) \otimes_{R}S\}^{S} \cong \{S \otimes_{R}S\}^{S}$

where $\{S \otimes_R S\}^S$ means the set of elements in $S \otimes_R S$ commuting to the elements of S. Explicitly, the correspondence is given by $\sum (s_1 \otimes s_2)(f) = \sum s_1 f(s_2)$ for $\sum s_1 \otimes s_2 \in \{S \otimes_R S\}^S$ and $f \in S$. Let Ψ_i be the restriction of Ψ to *i*-th component of $*S \oplus \cdots \oplus *S$ and $\sum_j (b_{ij}, m_{ij}) \otimes (c_{ij}, n_{ij})$ the corresponding element in $\{S \otimes_R S\}^S$. Then, for $[a, h] \in S$, we have

Received October 15, 1981.