ON TRIVIAL EXTENSIONS WHICH ARE QUASI-FROBENIUS ONES

By
Kazuhiko Hirata

Recently Y. Kitamura has characterized a trivial extension which is a Frobenius extension in [2]. In this paper we characterize a trivial extension which is a quasiFrobenius extension.

Let R be a ring with an identity and M an (R, R)-bimodule. The trivial extension $S=(R, M)$ of R by M is the direct sum of additive groups R and M with the multiplication $\left(r_{1}, m_{1}\right)\left(r_{2}, m_{2}\right)=\left(r_{1} r_{2}, r_{1} m_{2}+m_{1} r_{2}\right)$ for $\left(r_{i}, m_{i}\right) \in S . \quad S$ is a ring containing R with the identification $r \rightarrow(r, 0)$ for $r \in R$. Let $* S$ be the dual space of S as a left R-module. Then ${ }^{*} S$ is isomorphic to the direct sum of R and ${ }^{*} M=$ $\operatorname{Hom}\left({ }_{R} M,{ }_{R} R\right): * S=[R, * M]$. The action of an element $[a, h] \in * S$ on S is given by $[a, h]((r, m))=r a+h(m)$ for $(r, m) \in S . \quad * S$ has the structure of an (S, R)-bimodule. This is given by $(r, m)[a, h]=[r a+h(m), r h]$ and $[a, h] r=[a r, h r]$ for $(r, m) \in S,[a, h] \in * S$ and $r \in R$.

Following to [3] a ring extension S over R is called a left quasi-Frobenius extension when S is left R-finitely generated projective and a direct summand of a finite direct sum of ${ }^{*} S$ as an (S, R)-bimodule.

Let S be the trivial extension of R by M, and assume that S is a left quasiFrobenius extension of R. Then there exist (S, R)-homomorphisms $\Phi: S \rightarrow * S \oplus \cdots \oplus * S$ and $\Psi: * S \oplus \cdots \oplus * S \rightarrow S$ such that $\Psi \circ \Phi=1_{s}$. Let $\Phi((1,0))=\left(\left[a_{1}, h_{1}\right], \cdots,\left[a_{n}, h_{n}\right]\right)$. Then it is easily seen that h_{i} is contained in $\operatorname{Hom}\left({ }_{R} M_{R},{ }_{R} R_{R}\right)$ for all i. Next, we consider homomorphisms from ${ }^{*} S$ to S. Since S is left R-finitely generated projective, we have following isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}\left(s^{*} S_{R}, S_{S} S_{R}\right) \operatorname{Hom}\left({ }_{s} \operatorname{Hom}\left({ }_{R} S,{ }_{R} R\right)_{R},{ }_{s} S_{R}\right) \\
& \left.\cong \cong \operatorname{Hom}\left(R_{R}, S_{R}\right) \otimes_{R} S\right\}^{S} \cong\left\{S \otimes_{R} S\right\}^{S}
\end{aligned}
$$

where $\left\{S \otimes_{R} S\right\}^{S}$ means the set of elements in $S \otimes \otimes_{R} S$ commuting to the elements of S. Explicitely, the correspondence is given by $\Sigma\left(s_{1} \otimes s_{2}\right)(f)=\Sigma s_{1} f\left(s_{2}\right)$ for $\Sigma s_{1} \otimes s_{2} \in$ $\left\{S \otimes_{R} S\right\}^{S}$ and $f \epsilon^{*}$ S. Let Ψ_{i} be the restriction of Ψ to i-th component of ${ }^{*} S \oplus \cdots \oplus{ }^{*} S$ and $\Sigma_{j}\left(b_{i j}, m_{i j}\right) \otimes\left(c_{i j}, n_{i j}\right)$ the corresponding element in $\left\{S \otimes_{R} S\right\}^{S}$. Then, for $[a, h] \in{ }^{*} S$, we have

[^0]
[^0]: Received October 15, 1981.

