GENERATORS AND RELATIONS FOR COMPACT LIE ALGEBRAS

By

S. Berman¹⁾

1. Introduction.

The main purpose of this paper is to provide a system of generators and relations for each of the nine types of compact simple Lie algebras. Indeed, we are able to give a presentation of each such algebra which depends only on the finite Cartan matrix (A_{ij}) which is attached to the complexification of our compact algebra. One of the main results that lies behind our work is the Theorem of Serre which gives a presentation of the simple Lie algebras over the complex field attached to (A_{ij}) .

Although our main interest is with the compact Lie algebras, we work in the generality of Kac-Moody Lie algebras (see [1], [4], [7], [8]). In this setting we will be able to provide a generalization of the compact simple Lie algebras. We realize these algebras as certain forms of the Kac-Moody algebra. More specifically, if (A_{ij}) is any indecomposable Cartan matrix which is non-Euclidean we let \mathcal{L}_c (resp. $\bar{\mathcal{L}}_c$) be the reduced (resp. standard) Kac-Moody Lie algebra over the complex field C, (see Section 1 for more details). We define a real form \mathcal{L}_c (resp. $\bar{\mathcal{L}}_c$) of \mathcal{L}_c (resp. $\bar{\mathcal{L}}_c$), and show that \mathcal{L}_c is the only simple homomorphic image of $\bar{\mathcal{L}}_c$. We then give generators and relations for $\bar{\mathcal{L}}_c$. The question of when $\bar{\mathcal{L}}_c = \mathcal{L}_c$ is equivalent to the question of when $\mathcal{L}_c = \bar{\mathcal{L}}_c$, and is a major unsolved question about Kac-Moody algebras. However, thanks to Serre's Theorem, we know $\mathcal{L}_c = \bar{\mathcal{L}}_c$, and hence $\mathcal{L}_c = \bar{\mathcal{L}}_c$, when (A_{ij}) is of finite type. This yields a presentation of \mathcal{L}_c in this case.

The content of the paper is as follows. In Section 1 we recall the notation and a few facts about Kac-Moody algebras. In Section 2, the final section, we begin by making a study of the algebras \mathcal{L}_c and $\bar{\mathcal{L}}_c$. We then go on to obtain a presentation of $\bar{\mathcal{L}}_c$, and then use this in dealing with the compact simple Lie algebras. We think it is interesting that analogues of the compact Lie algebras exist in the Kac-Moody setting. Moreover, just as the compact algebras are

¹⁾ This work was supported by a National Science and Engineering Research Council of Canada grant.

Received September 8, 1980. Revised December 8, 1980.