ON A CLASSIFICATION OF ARONSZAJN TREES II

By

Masazumi HANAZAWA

§1. Introduction.

In the former paper [3], we considered the classification of Aronszajn trees by the notions of Souslin trees, ω_1 -trees with property γ , almost-Souslin trees, ω_1 trees with no club antichain, special Aronszajn trees and **R**-embeddable trees. As we remarked in its last section, there is another interesting notion. It is the notion of non-Souslin trees which had been introduced by Baumgartner [1]. The classification of Aronszajn trees by this notion together with the previous ones is shown by the following:

	'A			1	
$-\gamma ST$ $-\gamma ST$		9	10	11	- NS \
	12	13	14	15	-RE
~~	6		7	8	
$\begin{bmatrix} ST \\ 1 \end{bmatrix} 2$		3	4	5	SAL

where ST=the class of Souslin trees,

 γST =the class of ω_1 -trees with property γ ,

AST=the class of almost-Souslin trees,

NCA=the class of ω_1 -trees with no club anti-chain,

SAT=the class of special Aronszajn tree,

RE=the class of R-embeddable ω_1 -trees,

NS=the class of non-Souslin trees,

AT=the class of Aronszajn trees.

Under ZFC alone, none of the categories but Category 5 can be proved to be non-void. In the former paper we proved that if V=L, Categories 1~11 are all non-void (note that the trees constructed in Theorems 9, 10 and 11 [3], are the elements of Categories 9, 10 and 11 respectively). In this paper we shall prove that if V=L, remaining Categories 12~15 are also non-void. It is shown as a

Received May 29, 1980. Revised December 2, 1980.