INVARIANTS OF FINITE GROUPS GENERATED BY PSEUDO-REFLECTIONS IN POSITIVE CHARACTERISTIC

By

Haruhisa NAKAJIMA

Introduction

Let R be a commutative ring, and let V be a finitely generated free R-module. Let R[V] be a polynomial ring over R associated with V. Then a finite subgroup G of GL(V) acts naturally on R[V]. We denote by $R[V]^{g}$ the ring of invariants of R[V] under the action of G.

Let R=k be a field and suppose that |G| is a unit of k. It is known ([4], [9], [3], [8]) that $k[V]^{G}$ is a polynomial ring if and only if G is generated by pseudo-reflections in GL(V).

But, in the case where $|G| \equiv 0 \mod char(k)$, there are only the following results:

(1) L. E. Dickson [5]; $F_q[T_1, \dots, T_n]^{GL(n,q)}$ and $F_q[T_1, \dots, T_n]^{SL(n,q)}$ are polynomial rings, where F_q is the finite field of q elements.

(2) M.-J. Bertin [1]; $F_q[T_1, \dots, T_n]^{Unip(n,q)}$ is a polynomial ring, where

$$Unip(n,q) = \left\{ \sigma \in GL(n,q) : \sigma = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ * & & 1 \end{bmatrix} \right\}.$$

(3) J.-P. Serre [8]; (i) If $k[V]^{g}$ is a polynomial ring, then G is generated by pseudo-reflections in GL(V). (ii) $\mathbf{F}_{q}[T_{1}, T_{2}, T_{3}, T_{4}]^{O_{4}^{+}(\mathbf{F}q)}$ is not a polynomial ring, where $O_{4}^{+}(\mathbf{F}_{q})$ is the orthogonal group and $char(\mathbf{F}_{q}) \neq 2$.

The purpose of this paper is to determine finite irreducible subgroups G of GL(V) such that $k[V]^{G}$ are polynomial rings in the case where $|G| \equiv 0 \mod char(k)$. Let V be an *n*-dimensional vector space over a finite field k of characteristic p and let G be a subgroup of GL(V). Then our results are the following

[I] If G is a transitive imprimitive group generated by pseudo-reflections, then $k[V]^{G}$ is a polynomial ring.

[II] Suppose that $p \neq 2$, $n \geq 3$ and G is an irreducible group generated by transvections. Then $k[V]^G$ is a polynomial ring if and only if G is conjugate in GL(V)

Received June 2, 1978. Revised December 25, 1978