ON THE NULLITIES OF KÄHLER C-SPACES IN $P_{M}(C)$

By
Yoshio Kimura

Let M be a Kähler C-space which is holomorphically and isometrically imbedded in an N -dimensional complex projective space $P_{N}(\boldsymbol{C})$. Then M is a minimal submanifold of $P_{N}(\boldsymbol{C})$. Let $n_{a}(M)$ be the analytic nullity of M which was defined in [2]. We know that the nullity $n(M)$ of M is equal to $n_{a}(M)$ if M is a Hermitian symmetric space (Kimura [2]). In this note we prove that $n(M)=\mathrm{n}_{a}(M)$ for any Kähler C-space M.

By a theorem of Simons [5], the nullity of a Kähler submanifold coincides with the real dimension of the space of holomorphic sections of a normal bundle of the submanifold. Put $M=G / U$ where G is a complex semi-simple Lie group and U is a parabolic subgroup of G. By a result of Nakagawa and Takagi [4], we know that every imbedding of M in $P_{N}(\boldsymbol{C})$ is induced by a holomorphic linear representation of G. From this result we see that the normal bundle $N(M)$ over M is a homogeneous vector bundle.

We prove Theorem 1 which generalizes the generalized Borel-Weil theorem of Bott [1]. Applying the theorem to calculate the dimension of the space of holomorphic sections of $N(M)$ and prove that $n(M)=n_{a}(M)$.

The auther proved the above result before Proffesor Takeuchi gave another proof of it. His proof does not use Theorem 1 and is more simple than our proof (c.f. Takeuchi [6]).

§ 1. The generalization of Bott's result.

Let G be a simply connected compact semi-simple Lie group with Lie algebra \mathfrak{g}. Take a Cartan subalgebra \mathfrak{h} of \mathfrak{g}. Denoto by Δ the root system of \mathfrak{g} with respect to \mathfrak{h}. We fix a linear order on the real vector space spaned by the elements $\alpha \in \Delta$. Let Δ^{+}(resp. Δ^{-}) be the set of all positive (resp. negative) roots. Let $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be the fundamental root system, where l is the rank of g and Π_{1} be a subsystem of Π. We put

$$
\Delta_{1}=\left\{\alpha \in \Delta ; \alpha=\sum_{i=1}^{1} m_{i} \alpha_{i}, m_{j}=0 \quad \text { for any } \quad \alpha_{j} \notin \Pi_{1}\right\}
$$

Received June 9, 1978

