On direct modules

Dedicated to Professor Yoshie Katsurada on her sixtieth birthday

By Tsutomu TAKEUCHI

Y. Utumi obtained that if a ring R is left self-injective then so is the residue class ring R/J modulo the Jacobsn radical J of R. And B. L. Osofsky [5] extended this result to the case of endomorphism rings of quasi-injective modules. In this note we study endomorphism rings of those modules which are weaker than quasi-injectives, conforming to the method by Utumi [8].

1. Preliminaries. We will assume throughout that R is a nonzero ring with identity and that $M = {}_{R}M$ denotes a nonzero unital left R-module. Let ${}_{R}A$ be an (R-)submodule of ${}_{R}M$. A complement ${}_{R}A^{c}$ of ${}_{R}A$ in ${}_{R}M$ is a maximal submodule of ${}_{R}M$ such that $A \cap A^{c} = 0$. And, a double complement ${}_{R}A^{cc}$ of ${}_{R}A$ in ${}_{R}M$ is a complement of a complement of ${}_{R}A$ in ${}_{R}M$ such that $A \cap A^{c} = 0$. And, a double complement ${}_{R}A^{cc}$ of ${}_{R}A$ in ${}_{R}M$ is a complement of a complement of ${}_{R}A$ in ${}_{R}M$ such that $A \subset A^{cc}$. Zorn's lemma ensures the existence of ${}_{R}A^{c}$ and ${}_{R}A^{cc}$ for every submodule ${}_{R}A$ of ${}_{R}M$. ${}_{R}A$ is called complemented in ${}_{R}M$ if ${}_{R}A$ is a complement of some submodule of ${}_{R}M$ in ${}_{R}M$. To be easily seen, every direct summand of ${}_{R}M$ is complemented in ${}_{R}M$. Moreover, ${}_{R}A$ is essential in ${}_{R}A^{cc}$ and ${}_{R}A^{cc}$ is (essentially) closed in ${}_{R}M$, i.e., ${}_{R}A^{cc}$ has no proper essential extension in ${}_{R}M$.

The above leads the following smoothly:

LEMMA 1. Let $_{R}A$ be a submodule of $_{R}M$. Then the following conditions are equivalent:

(i) $_{R}A$ is closed in $_{R}M$.

(ii) $_{R}A$ is complemented in $_{R}M$.

(iii) $A = A^{cc}$ for some double complement ${}_{R}A^{cc}$ of ${}_{R}A$ in ${}_{R}M$.

(iv) $A = A^{cc}$ for every double complement ${}_{R}A^{cc}$ of ${}_{R}A$ in ${}_{R}M$.

(v) Let _RB be any submodule of _RM contained in A. If _RB is essential in _RA, then there exists such a double complement _RB^{cc} of _RB in _RM that $B^{cc} = A$.

The following notations will be adopted henceforth. Let $_{R}M$ be a left R-module and let S be the (R-)endomorphism ring of $_{R}M$, acting on the right side. Therefore $M = _{R}M_{S}$ is a left R- and right S-bimodule. For $_{R}M$ we set

 $Z(_{\mathbb{R}}M) = \{a \in M \mid {}_{\mathbb{R}}^{\mathbb{R}}a \text{ is essential in } {}_{\mathbb{R}}R\},\$ $Z(M_{S}) = \{a \in M \mid a_{S}^{S} \text{ is essential in } S_{S}\}$