SUR LES THÉORÈMES DE COMPARAISON DES ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES

Par

Masuo HUKUHARA et Tokui SATÔ

TABLE DES MATIÈRES

~		PAGE
CHAPIT	TRE I. INTRODUCTION	194
1.	Notations	194
2.	Hypothèses que nous supposons pour comparer les deux équa-	
~	tions	195
CHAPIT	RE II. THÉORÈMES FONDAMENTAUX	197
3.	Enoncés des théorèmes fondamentaux	197
4.	Démonstrations des théorèmes fondamentaux	198
5.	Extensions des théorèmes fondamentaux au cas où l'intervalle	
	considére est ouvert à gauche	201
Снаріт	RE III. APPLICATIONS	202
6.	Théorèmes d'existence	202
7.	Théorèmes de comparaison	203
8.	Examen des hypothèses	204
9.	Théorèmes d'unicité	
10.	Calaril dag amoung	207
10.	Calcul des erreurs	210
11.	Généralisations	211

Pour les équations différentielles ordinaires on sait de divers théorèmes de comparaison parmi lesqueles nous citerons quelques exemples.

Supposons que les équations différentielles

(1)
$$\frac{dy_j}{dx} = f_j(x, y, \ldots, y_m) \qquad (j = 1, 2, \ldots, m)$$

admettent une solution

$$y_j = y_j(x) \qquad (j = 1, 2, \ldots, m)$$

continue dans l'intervalle $a \leq x < b$, et désignons par y_1^0, \ldots, y_m^0 les valeurs $y_1(a), \ldots, y_m(a)$.