ON THE MAXIMAL SPECTRALITY

By

Takasi ITŌ

Let R be a Hilbert space and \mathfrak{B} a totally additive set class in an abstract space Ω. Asystem of proiection operators $E(\Phi)(\Phi \in \mathfrak{B})$ in R is called a spectrality ${ }^{1}$ in R on \mathfrak{B} if (1) $E(\mathscr{D})+E\left(\mathscr{\Phi}^{C}\right)=1$, and (2) $E\left(\sum_{i=1}^{\infty} \Phi_{i}\right)$ $=\bigcup_{i=1}^{\infty} E\left(\Phi_{i}\right)$. We say a spectrality $E(\mathbb{J})(\mathscr{D} \in \mathfrak{B})$ is maximal (due to Prof. Nakano's suggestion) if

1) for any finite measure ν on \mathfrak{B} we can find an element $x \in R$ such that $\nu(\Psi)=\|E(\Phi) x\|^{2}(\Phi \in \mathfrak{B})$, and
2) \mathfrak{R}_{E} is a simple ring, where \mathfrak{R}_{E} is a closed projection operator ring ${ }^{2)}$ generated .by $\{E(\Phi) ; \Phi \in \mathfrak{B}\}$.
\mathfrak{R}_{H} is simple ${ }^{3}$ if and only if for any projection operator P that is commutative to \mathfrak{R}_{H} we have $P \in \mathfrak{R}_{E}$.

In this paper we shall show that for any given Ω and \mathfrak{B} we can construct a Hilbert space R and a maximal spectrality $E(\mathscr{L})(\mathscr{\mathscr { B }})$ in R on \mathfrak{B}, and moreover R and $E(\Phi)(\Phi \in \mathfrak{B})$ are determined uniquely within an unitary isomorphism (Theorem 1). Conversely for any given R we can find Ω and \mathfrak{B} for which there exists a discrete maximal spectrality in R on \mathfrak{B}. But it is known in Wecken [1] that if the dimension of R is cotinuum, there exists in R a maximal spectrality on the Borel sets in the real line. If R is separable, we can prove that there is no maximal spectrality other than a discrete one (Theorem 2).

Theorem 1. For any given Ω and \mathfrak{B} we can construct a Hilbert space R and a maximal spectrality $E(\mathscr{L})(\mathscr{\mathscr { B }})$ in R. Furthermore such R and $E(\mathscr{L})(\mathscr{P} \in \mathfrak{B})$ are determined uniquely within unitary isomorphism.

The method of the proof is essentialy same as in [1], so we give an outline only, about details refer [1] or Nakano [2] Chap. V.

Let $\mathfrak{M}_{\mathfrak{B}}$ be the totality of finite measures on \mathfrak{B}. From the property of $\mathfrak{M}_{\mathfrak{B}}$ as a Boolian lattice and Maximal theorem we can find a maximal

1) cf. [2] § 28.
2) cf. [2] § 14 .
3) cf. [2] §20.
