ON THE MAXIMAL SPECTRALITY

By

Takasi ITŌ

Let R be a Hilbert space and \mathfrak{B} a totally additive set class in an abstract space \mathfrak{Q} . Asystem of projection operators $E(\mathfrak{Q})(\mathfrak{Q} \in \mathfrak{B})$ in R is called a *spectrality*¹⁾ in R on \mathfrak{B} if (1) $E(\mathfrak{Q}) + E(\mathfrak{Q}^c) = 1$, and (2) $E\left(\sum_{i=1}^{\infty} \mathfrak{Q}_i\right) = \bigcup_{i=1}^{\infty} E(\mathfrak{Q}_i)$. We say a spectrality $E(\mathfrak{Q})(\mathfrak{Q} \in \mathfrak{B})$ is maximal (due to Prof. NAKANO'S suggestion) if

1) for any finite measure ν on \mathfrak{B} we can find an element $x \in R$ such that $\nu(\mathcal{O}) = ||E(\mathcal{O})x||^2 \ (\mathcal{O} \in \mathfrak{B})$, and

2) \Re_E is a simple ring, where \Re_E is a closed projection operator ring² generated by $\{E(\Phi); \Phi \in \mathfrak{B}\}$.

 \Re_E is simple³⁾ if and only if for any projection operator P that is commutative to \Re_E we have $P \in \Re_E$.

In this paper we shall show that for any given Ω and \mathfrak{B} we can construct a Hilbert space R and a maximal spectrality $E(\Phi)(\Phi \in \overline{\mathfrak{B}})$ in R on \mathfrak{B} , and moreover R and $E(\Phi)$ ($\Phi \in \mathfrak{B}$) are determined uniquely within an unitary isomorphism (Theorem 1). Conversely for any given R we can find Ω and \mathfrak{B} for which there exists a *discrete* maximal spectrality in R on \mathfrak{B} . But it is known in WECKEN [1] that if the dimension of R is cotinuum, there exists in R a maximal spectrality on the Borel sets in the real line. If R is separable, we can prove that there is no maximal spectrality other than a discrete one (Theorem 2).

Theorem 1. For any given Ω and \mathfrak{B} we can construct a Hilbert space R and a maximal spectrality $E(\Phi)(\Phi \in \mathfrak{B})$ in R. Furthermore such R and $E(\Phi)(\Phi \in \mathfrak{B})$ are determined uniquely within unitary isomorphism.

The method of the proof is essentialy same as in [1], so we give an outline only, about details refer [1] or NAKANO [2] Chap. V.

Let $\mathfrak{M}_{\mathfrak{B}}$ be the totality of finite measures on \mathfrak{B} . From the property of $\mathfrak{M}_{\mathfrak{B}}$ as a Boolian lattice and Maximal theorem we can find a maximal

¹⁾ cf. [2] §28.

²⁾ cf. [2] §14.

³⁾ cf. [2] §20.