On some 3-dimensional Riemannian manifolds

By Kouei Sekigawa

1. Introduction. The Riemannian curvature tensor R of a locally symmetric Riemannian manifold (M, g) satisfies

$$
(*) \quad R(\mathrm{X}, Y) \cdot R=0 \quad \text { for all tangent vectors } \mathrm{X} \text { and } Y
$$

where $R(\mathrm{X}, Y)$ operates on R as a derivation of the tensor algebra at each point of M. Conversely, does this algebraic condition on the curvature tensor field R imply that $\nabla R=0$? K. Nomizu conjectured that the answer is positive in the case where (M, g) is complete irreducible and $\operatorname{dim} M \geqq 3$. But, recently, H. Takagi [9] gave an example of 3-dimensional complete, irreducible real analytic Riemannian manifold (M, g) satisfying $\left(^{*}\right)$ and $\nabla R \neq 0$ as a hypersurface in a 4 -dimensional Euclidean space E^{4}. Furthermore, the present author proved that, in an $(m+1)$-dimensional Euclidean space $E^{m+1}(m \geqq 4)$, there exist some complete, irreducible real analytic hypersurfaces which satisfy (${ }^{*}$) and $\nabla R \neq 0$ ([6] in references). Let R_{1} be the Ricci tensor of (M, g). Then, $\left(^{*}\right)$ implies in particular
(**) $\quad R(\mathrm{X}, Y) \cdot R_{1}=0 \quad$ for all tangent vectors X and Y.
In the present paper, with respect to this problem, we shall give an affirmative answer in the case where (M, g) is a certain 3-dimensional compact, irreducible real analytic Riemannian manifold, that is

Theorem. Let (M, g) be a 3-dimensional compact, irreducible real analytic Riemannian manifold satisfying the condition $\left(^{*}\right.$) (or equivalently $\left(^{* *}\right)$). If the Ricci form of (M, g) is non-zero, positive semi-definite on M, then (M, g) is a space of constant curvature.

I should like to express my hearty thanks to Prof. S. Tanno for his kind suggestions and many valuable criticisms.
2. Lemmas. Let (M, g) be a 3-dimensional real analytic Riemannian manifold. Let R^{1} be a field of symmetric endomorphism satisfying $R_{1}(\mathrm{X}, Y)$ $=g\left(R^{1} \mathrm{X}, Y\right)$. It is known that the curvature tensor of (M, g) is given by

$$
\begin{equation*}
R(\mathrm{X}, Y)=R^{1} \mathrm{X} \wedge Y+\mathrm{X} \wedge R^{1} Y-\frac{\text { trace } R^{1}}{2} \mathrm{X} \wedge Y \tag{2.1}
\end{equation*}
$$

for all tangent vectors X and Y.

