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Introduction. This is the continuation of the previous paper ([1])^{1)}

given by H. Hopf and the present author. In [1], considering an (m+1)-

dimensional orientable Riemann space S^{m+1} with constant Qurvature of class
C^{\nu}(\nu\geqq 3) which admits a one-parameter \rangle group G of isometric transforma-
tions, we proved the following

THEOREM. Let W^{m} and \overline{W}^{m} be two orientable closed hypersurfaces in
S^{m+1} which do not contain a piece of a hypersurface covered by the orbits
of the transformations and p\overline{p} be the corresponding points of these hyper-
surfaces along an orbit, and H_{r}(p) and \overline{H}_{r}(p), r=1, \cdots , m be the r-th mean
curvatures of these hypersurfaces at p and \overline{p} respectively. Assume that in

def .
case r\geqq 2 , the second fundamental form of W^{m}(t)=(1-t)W^{m}+t^{1}\overline{W}^{m}, 0\leqq t\leqq 1 ,
is positive definite. If the relation H_{r}(p)=\overline{H}_{r}(p) holds for each point p\in W^{m},
then W^{m} and \overline{W}^{m} are congruent mod G.

In the present paper, we shall cancel the assumption that the trans-
formations are isometr\cdot ic , in fact, under a group G of essentially arbitrary
transformations it is the purpose of the present paper to generalize the
above theorem. Especially, in case of r=m, that is, the general theorem
relating to the Gauss curvature was already proved in the previous paper [2].

\S 1. A certain integral form for two closed hypersurfaces. We
suppose an (m+1)-dimensional orientable Riemann space S^{m+1} with constant
curvature of class C^{\nu}(\nu\geqq 3) which admits an infinitesimal transformation

(1. 1) \hat{x}^{i}=x^{\dot{l}}+\xi^{i}(x)\delta\tau

(where x^{i} are local coordinates in S^{m+1} and \xi^{t} are the components of a
contravariant vector \xi). We assume that orbits of the transformations
generated by \xi cover S^{m+1} simply and that \xi is everywhere continuous and
\neq 0 . Let us choose a coordinate system such that the orbits of transfor-

1) Numbers in brackets refer to the references at the end of the paper.


