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§1. Introduction and results

In this paper we are concerned with an existence theorem of a solution

ucH, . (R'x Q) of the boundary value problem (P, B):
P(x, D)u(x) = f(x) in R*x 2,
B(x, D)u(x) = g(x) on I,

where feH,,(R'x Q) and g€H,;,(I"). Here we assume that P is an z,
-hyperbolic 2x2 system of pseudo-differential operators of order 1 and B
is a 1x2 system of those of order 0 on the smooth boundary I' of R'x£.

While we try to extend the results in [7, section 7] to more general
cases being inspired by the works of R. Agemi [2] and S. Miyatake [6],
we find that there are certain gaps between L?-well posedness for (P, B)
(see [4]) and their conditions which is described in terms of symbols of P
and B. In the present note, applying a concept of modified symmetrizers,
we shall clarify the differences mentioned above and difficulties of mixed
problems for hyperbolic systems. By localizations and coordinate transfor-
mations we may restrict ourselves to the case where

R'xQ = R*™ = {x = (2, z,); xn>0} ,
I' = {(x’, 0); ' = (x,, :c”)ER”}.

Let (z, 0, 2) be a covariable of x=(xy, 2", x,) such that Im r<0. We assume
that symbols of the principal part P° of P and B are independent of x
if |z| is sufficiently large, homogeneous in (r, 0,2) and (r, o) respectively,
analytic in = and the determinant det P° of P° is an z,-strictly hyperbolic
polynomial of order 2. Moreover I' is non-characteristic with respect to
det P° and B(x/, 7, 0) is of rank 1 for any (&, 7, )€ R* x(Cx R"\0). Finally
any problems (P, B), obtained by freezing their coefhcients at xel" are L’-
well posed.

As it is well known, the difficulties in our problem (P, B) arise from
the following: there is a point (2° 7° ¢°)€l” x (R*\0) such that the char-
acteristic equation det P° (z° 7°, ¢°,1)=0 has a real double root 2=4° and



