Parametrices for pseudo-differential equations with double characteristics II.

By Kazuhiro YAMAMOTO (Received October 6, 1975)

1. Introduction.

In our previous paper [11] we constructed parametrices for some double characteristic pseudo-differential operators, whose characteristic sets are closed conic manifolds of codimension 2 in the cotangent space. In this paper we shall show that the condition of Theorem 1.2 in [11] is necessary and sufficient condition for existence of parametrices.

In order to describe the result more precisely we must recall some notations and hypothese. Let X be a paracompact C^{∞} manifold of dimension n and $T^*(X)\setminus 0$ be the cotangential space minus the zero section. P(x, D) is a properly supported classical pseudo-differential operator on X of order m. We denote the principal symbol of P by $p_m(x, \xi) \in C^{\infty}(T^*(X)\setminus 0)$. For arbitrary $C^{\infty}(T^*(X)\setminus 0)$ functions f and g we denote the Poisson bracket of f and g by $\{f,g\}$ and the Hamilton vector field of f by H_f . For a nonnegative integer k and a connected closed conic non-involutory submanifold Σ of $T^*(X)\setminus 0$ with codim $\Sigma=2$, we use the notations $M^{m,k}(\Sigma,X)$ and σ (P) for $P \in M^{m,k}(\Sigma,X)$ when k is odd. These notations are defined in definition 1.1 of [11].

We consider the following properly supported pseudo-differential operator L(x, D) with double characteristics given by

(1.1)
$$L(x, D) = (P \cdot Q)(x, D) + R(x, D).$$

Here $P \in M^{m_1,k}(\Sigma, X)$, $Q \in M^{m_2,k}(\Sigma, X)$ and $R \in M^{m_1+m_2-1,k-1}(\Sigma, X)$.

In the following theorem we write $A \equiv B$ for operators A and B; $\mathscr{D}'(X) \to \mathscr{D}'(X)$ if A - B is an integral operator with the C^{∞} -kernel. We also write diag $(V) = \{(\rho, \rho) ; \rho \in V\} \subset (T^*(X) \setminus 0) \times (T^*(X) \setminus 0)$ for any conic subset V of $T^*(X) \setminus 0$. Our statement is the following

Theorem. Let L(x,D) be a double characteristic pseudo-differential operator defined by (1,1), where k is an odd integer and $\sigma(P)=1$, $\sigma(Q)=-1$. We assume that $(H_{p_{m_1}})^l \ q_{m_2} \ (x,\xi)=0$ on Σ for $l=1,\cdots,k-1$ and $(H_{p_{m_1}})^l \ r_{m_1+m_2-1} \ (x,\xi)=0$ on Σ for $l=1,\cdots,k-2$ where k>1. Then the following statements are equivalent.