## A note on symmetric codes over $G F(3)$

By Noboru Ito*<br>(Received September 26, 1979)

Let $q$ be a prime power such that $q \equiv 2(\bmod 3)$ and $q \equiv 1(\bmod 4)$, $G F(q)$ a field of $q$ elements and $\mu$ the quadratic character of $G F(q)^{X}$ with $\mu(0)=0$.

Let $T$ be a matrix of degree $q$ defined by $T(a, b)=\mu(b-a)$, where $a, b \in G F(q)$, and

$$
S=\left(\begin{array}{cccc}
0 & 1 \cdots & 1 \\
1 & \cdots & \\
\vdots & T & \\
1 & & \\
1 & &
\end{array}\right)
$$

Let $C(q)$ be the code generated by $(I, S)$ over $G F(3)$, which is introduced by V. Pless in [3] and $I$ denotes the identity matrix of degree $q+1$.

The purpose of this note is to show that the minimum weight of $C(q)$ is not smallet than $\sqrt{q}$.
$\S 1$. Let $C^{*}(q)$ be the code generated by $(I, S)$ over $G F\left(3^{2}\right)$. Let $i$ be a primitive fourth root of unity in $G F\left(3^{2}\right)$. Then we may choose

$$
\left(\begin{array}{rr}
-I-i S, & i I-S \\
-I+i S, & -i I-S
\end{array}\right)
$$

as generators of $C^{*}(q)$, since $(-S, I)$ is contained in $C(q)$ (See [3]). We notice that $-i(-I-i S)=i I-S$ and $i(-I+i S)=-i I-S$. Let $U$ and $L$ be the subcodes of $C^{*}(q)$ generated by $(-I-i S, i I-S)$ and $(-I+i S,-i I-S)$ respectively. Then any codevector of $C^{*}(q)$ has a form $(x+y,-i(x-y))$, where $(x,-i x) \in U$ and $(y, i y) \in L$.

Lemma 1. Let w denote the weight function. Then we have that

$$
w(x+y,-i(x-y)) \geqq w(x) \text { and } w(y)
$$

Proof. We may label elements of $G F\left(3^{2}\right)$ as follows: $a_{1}=0, a_{2}=1$, $a_{3}=-1, a_{4}=i, a_{5}=i+1, a_{6}=i-1, a_{7}=-i, a_{8}=-i+1$ and $a_{9}=-i-1$. Now

