A note on symmetric codes over GF(3)

By Noboru Ito*

(Received September 26, 1979)

Let q be a prime power such that $q \equiv 2 \pmod{3}$ and $q \equiv 1 \pmod{4}$, GF(q) a field of q elements and μ the quadratic character of $GF(q)^x$ with $\mu(0)=0$.

Let T be a matrix of degree q defined by $T(a, b) = \mu(b-a)$, where a, $b \in GF(q)$, and

$$S = \begin{pmatrix} 0 & 1 \cdots 1 & 1 \\ 1 & & \\ \vdots & T & \\ 1 & & \\ 1 & & \\ 1 & & \\ \end{pmatrix}.$$

Let C(q) be the code generated by (I, S) over GF(3), which is introduced by V. Pless in [3] and I denotes the identity matrix of degree q+1.

The purpose of this note is to show that the minimum weight of C(q) is not smallet than \sqrt{q} .

§ 1. Let $C^*(q)$ be the code generated by (I, S) over $GF(3^2)$. Let *i* be a primitive fourth root of unity in $GF(3^2)$. Then we may choose

$$\begin{pmatrix} -I-iS, & iI-S \\ -I+iS, & -iI-S \end{pmatrix}$$

as generators of $C^*(q)$, since (-S, I) is contained in C(q) (See [3]). We notice that -i(-I-iS)=iI-S and i(-I+iS)=-iI-S. Let U and L be the subcodes of $C^*(q)$ generated by (-I-iS, iI-S) and (-I+iS, -iI-S)respectively. Then any codevector of $C^*(q)$ has a form (x+y, -i(x-y)), where $(x, -ix) \in U$ and $(y, iy) \in L$.

LEMMA 1. Let w denote the weight function. Then we have that

$$w(x+y, -i(x-y)) \ge w(x)$$
 and $w(y)$.

PROOF. We may label elements of $GF(3^2)$ as follows: $a_1=0$, $a_2=1$, $a_3=-1$, $a_4=i$, $a_5=i+1$, $a_6=i-1$, $a_7=-i$, $a_8=-i+1$ and $a_9=-i-1$. Now