Microlocal parametrices for mixed problems for symmetric hyperbolic systems with diffractive boundary

By Kôji Kubota

(Received June 24, 1980; Revised October 20, 1980)

§ 1. Introduction

Microlocal parametrices for hyperbolic mixed problems in domains with diffractive boundary have been constructed by Ludwig [9], Melrose [11], Taylor [16], Eskin [3] and others for second-order hyperbolic equations with Dirichlet boundary conditions. Taylor [16] (or [18]) has also obtained such results for Neumann boundary conditions, and Imai and Shirota [4] have obtained such results for certain general boundary conditions which include the Neumann conditions. (See also Shirota [14]). Moreover applying the results in [16] Taylor has obtained in [17] such results for Maxwell's equations in the exterior of a strictly convex perfect conductor.

The purpose of this paper is to give a generalization of the above results. Let Ω be the open half space $\{x=(x', x_n)=(x_0, x'', x_n); x_0 \in \mathbb{R}^1, x'' \in \mathbb{R}^{n-1}, x_n > 0\}$ in \mathbb{R}^{n+1} $(n \ge 2)$ with boundary $\partial \Omega$ and P(x, D) a symmetric system of first order defined on $\overline{\Omega}$ which is hyperbolic with respect to x_0 . Consider a mixed problem :

$$\begin{split} P(x,D) & u = \sum_{j=0}^{n} A_{j}(x) D_{j}u + C(x) u = 0 \quad \text{in } \Omega, \\ B(x') & u = f(x') \quad \text{on } \partial\Omega, \\ u(x) &= 0 \quad \text{in } \Omega \cap \{x_{0} < 0\}, \end{split}$$

where $D_j = -i\partial/\partial x_j$, A_j , $j=0, 1, \dots, n$, are hermitian $m \times m$ matrices, A_0 is positive definite, and A_j , C and B are smooth (i. e., of class C^{∞}) and are constant for |x| large enough.

Let $f \in \mathcal{E}'(\partial \Omega)$, f(x') = 0 for $x_0 < 0$ and the wave front set WF(f) be contained in a conic neighborhood of the diffractive points. We then want to show that there is a parametrix for the mixed problem, i. e., a distribution $u \in \mathcal{D}'(\Omega \cap U)$ with a neighborhood U of sing supp f in \mathbb{R}^{n+1} such that u(x) is a C^{∞} -function of $x_n \ge 0$ with value in $\mathcal{D}'(\mathbb{R}^n_{x'})$ and

(1.1)
$$P(x, D) u \in C^{\infty}(\overline{\Omega} \cap U),$$