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Abstract

The classical result of D. V. Widder characterizing those complex-valued
functions on (0, \infty) which are the Stieltjes transform of a complex measure
on [0, \infty) , is generalized to functions with values in a quasi-complete locally
convex space. This result is then used to establish a criterion for operators
with spectrum in [0, \infty) to be scalar-type spectral operators.

Introduction

Let M and D respectively denote the formal operators of multiplication
M:f(t)\mapsto tf(t) and differentiation D:farrow f’ . The (formal) Widder differential
operators L_{k} are given by

L_{k}=c_{k}M^{k-1}D^{2k-1}M^{k} , k=1,2, \cdots , ( 1)

where c_{1}=1 and c_{k}=(-1)^{k}[k ! (k -- 2) !]^{-1} for k\geq 2 .
It is known that a complex-valued function f on (0, \infty) can be char-

acterized as a Stieltjes transform in terms of the maps L_{k}(f) , k=1,2, \cdots .
Namely, there exists a (unique) regular complex Borel measure m on [0, \infty)

such that

f(t)= \hat{m}(t)=\int_{0}^{\infty}(s+t)^{-1}dm(s) , t\in(0, \infty) , (2)

if and only if f has derivatives of all orders in (0, \infty) and there exists a
constant K such that

\int_{0}^{\infty}|L_{k}(f)(t)|dt\leq K . k=1,2, \cdots,\cdot (3)

(see [8], VIII Theorem 16 or [4], p. 165).
Let C_{0} denote the space of all continuous complex-valued functions on

[0, \infty) which vanish at infinity, equipped with the uniform norm. Then
condition (3) means that the maps \Phi_{k}(f) , k=1,2, \cdots : defined by


