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Spectral orders and differences
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1. Introduction

The purpose of this paper is to investigate the relationship between
differences of functions and majorization inequalities. More specifically, we
shall extend the following theorem of Lorentz-Shimogaki-Day (see [12, PropO-
sition 1, p. 34] and [5, Proposition (6. 1) (ii), p. 941] ) to the case when
(X, \Lambda, \mu) is any totally \sigma-finite measure space:

THEOREM L-S-D. Let (X, \Lambda, \mu) be a fifinite measure space. If f, g\in

L^{1}(X) , then f^{*}-g^{*}\prec f-g and |f^{*}-g^{*}|\prec\prec|f-g| .
In the above theorem, \prec and \prec\prec mean the Hardy, Littlewood and

P\’olya preorders (precisely defined in chapter 2).
Our Main Theorems are Theorems 1 and 2 in chapter 2. Proofs of

them are easy; but they have many important applications in analytical
fields. Theorems 1 and 2 extend recent results obtained by Chong [4, the
left hand side inequality of (3. 7), p. 148] and by Chiti [1, Theorem, p. 24],
and as a corollary to Theorem 2 (Corollary 8), we can show that, in any
Orlicz spaces, convergence of a sequence \{f_{n}\} to f implies convergences of
\{f_{n}^{*}\} to f^{*} , and \{|f_{n}|^{*}\} to |f|^{*} , where, in general, h^{*} means the decreasing
rearrangement of a measurable function h.

2. Preliminaries and statements of the Main Theorems

Let (X, \Lambda, \mu) be a measure space. Throughout the paper, we assume
that \infty\geqq a=\mu(X)>0 and m is Lebesgue measure on [0, a) . Denote by
\mathfrak{M}(X) the set of all extended-real valued measurable functions on X, and let
L^{1}(X) and L^{\infty}(X) stand for the set of all integrable functions and essentially
bounded functions on X respectively. Any \mu a . e . equal functions are iden-
tified. To each f in \mathfrak{M}(X) , assign its decreasing rearrangement f^{*} (see [13],
[2], [9] and [15]) : f^{*’} is a uniquely determined, non-increasing and right con-
tinuous function on [0, a) which is equidistributed with f, that is, d_{f}(s)\equiv

\mu([f>s])=m([f^{*}>s]) for all s\in R=(-\infty, \infty) . In fact, the function f^{*} is
defined by f^{*}(t)= \sup\{s: d_{f}(s)>t\} , provided that sup \emptyset=-\infty , where \emptyset

denotes the empty set.


