On H -separable extensions of primitive rings

In memory of Professor Akira Hattori

Kozo Sugano
(Received December 17, 1986, Revised February 4, 1987)

Introduction. Throughout this paper every ring will have the identity, and every subring of it will contain the identity of it. A ring is said to be strongly primitive if it has a faithful minimal left ideal. The structure of strongly primitive ring was researched in [1] and [2] by Nakayama and Azumaya. The aim of this paper is to give a necessary and sufficient condition for an H-separable extension ring A of a strongly primitive ring B to be strongly primitive. We will show that, if B is a strongly primitive ring with the socle 3 , and if A is an H-separable extension of B such that A is left (or right) B-finitely generated projective, then the necessary and sufficient condition for A to be strongly primitive is that $A_{j} A \cap B=\boldsymbol{\jmath}$ holds (Theorem 1). This condition is a sufficient condition, if we assume that A is an H-separable extension of a strongly primitive ring B such that B is a left (or right) B-direct summand of A. Finally, we will consider the case where A is a left full linear ring with the center C, D is a simple C-subalgebra of A with $[D: C]<\infty$ and $B=V_{A}(D)$, the centralizer of D in A. In the above situation Nakayama and Azumaya obtained much more interesting results in [1] and [2]. In particular, they showed that B is also a left full linear ring, $V_{A}(B)=D$ and that the same inner Galois theory as in simple artinian ring holds in this case, too. In this paper we will show that $S=A_{\boldsymbol{\jmath}} A, A_{\text {子 }} A \cap B=$ z and $\left.S=\operatorname{Soc}\left({ }_{B} A\right)=\operatorname{Soc}\left(A_{B}\right)=A_{\mathfrak{\gamma}}=\right\} A$ hold if A and B are in the above situation, where S and z are the socles of A and B, respectively (Theorem $2)$.

Preliminaries. First we recall some definitions. Let A be a ring. Hereafter we will call each two sided ideal of A, simply, an ideal of A. The socle of a left (resp. right) A-module M is the sum of all minimal A-submodules of M, and denoted by $\operatorname{Soc}\left({ }_{A} M\right.$) (resp. $\operatorname{Soc}\left(M_{A}\right)$). A is said to be a left primitive ring if A has a faithful simple left A-module. A right primitive ring is similarly defined, and a both left and right primitive ring is called simply primitive ring. Now we put a stronger condition on $A . A$ is said to be strongly primitive if A has a faithful minimal left ideal. In this case A has also a faithful minimal right ideal. Thus strong primitivity is left

