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Introduction. Throughout this paper every ring will have the identity,
and every subring of it will contain the identity of it. A ring is said to be
strongly primitive if it has a faithful minimal left ideal. The structure of
strongly primitive ring was researched in [1] and [2] by Nakayama and
Azumaya. The aim of this paper is to give a necessary and sufficient
condition for an H-separable extension ring A of a strongly primitive ring B
to be strongly primitive. We will show that, if B is a strongly primitive ring
with the socle \partial , and if A is an H-separable extension of B such that A is left
(or right) B-finitely generated projective, then the necessary and sufficient
condition for A to be strongly primitive is that \^A A\cap B =\partial holds (Theorem

1). This condition is a sufficient condition, if we assume that A is an
H-separable extension of a strongly primitive ring B such that B is a left (or

right) B-direct summand of A . Finally, we will consider the case where A

is a left full linear ring with the cent C, D is a simple C-subalgebra of A

with [D:C]<\infty and B=V_{A}(D) , the centralizer of D in A . In the above
situation Nakayama and Azumaya obtained much more interesting results in
[1] and [2]. In particular, they showed that B is also a left full linear ring,
V_{A}(B)=D and that the same inner Galois theory as in simple artinian ring

holds in this case, too. In this paper we will show that S=A\partial A , A\partial A\cap B=

\partial and S=Soc(AB)=Soc(AB)=A\partial=\partial A hold if A and B are in the above
situation, where S and \partial_{j} are the socles of A and B, respectively (Theorem

2).

Preliminaries. First we recall some definitions. Let A be a ring.
Hereafter we will call each two sided ideal of A, simply, an ideal of A . The
socle of a left (resp. right) A -module M is the sum of all minimal
A -submodules of M, and denoted by Soc(_{A}M) (resp. Soc(M_{A}) ). A is said
to be a left primitive ring if A has a faithful simple left A -module. A right
primitive ring is similarly defined, and a both left and right primitive ring is
called simply primitive ring. Now we put a stronger condition on A. A is
said to be strongly primitive if A has a faithful minimal left ideal. In this
case A has also a faithful minimal right ideal. Thus strong primitivity is left


