H-separable Extensions and Torsion Theories

In memory of Professor Akira Hattori

Yoshiki Kurata and Shoji Morimoto (Received May 26, 1986)

Introduction. Let A be a ring with identity and B a subring of A with common identity. We shall say that A is H-separable over B if $A \otimes_B A$ is isomorphic to a direct summand of a finite direct sum of copies of A as (A, A)-bimodules. Let C be the center of A and $V_A(B)$ the commutator of B in A. Then it is well-known that A is H-separable over B iff the maping $\eta: A \otimes_B A \to \operatorname{Hom}_C(V_A(B), A)$ given by $\eta(a \otimes a')(v) = ava'$ for a, a' in A and v in $V_A(B)$ is an isomorphism and $V_A(B)$ is a finitely generated projective C-module [7, Theorem 1.1].

Recently K. Sugano [8] has pointed out that H-separable extensions of B have close connections with Gabriel topologies on B. He showed, among other things, that if A is left flat and H-separable over B then $V_A(V_A(B))$ is isomorphic to the localization of B with respect to the right Gabriel topology consisting of all right ideals $\mathfrak b$ of B such that $\mathfrak bA = A$, where $V_A(V_A(B))$ denotes the double commutator of B in A. Using this he then showed that if A is H-separable over B and B is regular then $B = V_A(V_A(B))$.

Motivated by his results we shall study in this paper H-separable extensions of B from the point of view of torsion theories. We shall begin with the study of the torsion class

$$T = \{ M_B \mid M \otimes_B A = 0 \}$$

of mod-B. If ${}_BA$ is flat, then T is hereditary. This assumption, however, is not necessary for T to be hereditary. We shall introduce the notion of weakly flat B-modules and show that the weakly flatness of A ensures T to be hereditary. We shall provide an example to show that not all weakly flat modules are flat. It is shown in case A is H-separable over B a necessary and sufficient condition for $B \rightarrow V_A(V_A(B))$ to be a right flat epimorphism (Theorem 3.9) and also one for $B = V_A(V_A(B))$ to hold (Theorem 3.12).

We shall use M_B to denote a right B-module M and $M' \le M$ a submodule M' of M. Consequently $a \le B_B$ means that a is a right ideal of B. For undefined notions about torsion theory we shall refer to a