H-separable Extensions and Torsion Theories

In memory of Professor Akira Hattori

Yoshiki Kurata and Shoji Morimoto
(Received May 26, 1986)

Introduction. Let A be a ring with identity and B a subring of A with common identity. We shall say that A is H-separable over B if $A \otimes_{B} A$ is isomorphic to a direct summand of a finite direct sum of copies of A as (A, A)-bimodules. Let C be the center of A and $V_{A}(B)$ the commutator of B in A. Then it is well-known that A is H-separable over B iff the maping η : $A \otimes{ }_{B} A \rightarrow \operatorname{Hom}_{C}\left(V_{A}(B), A\right)$ given by $\eta\left(a \otimes a^{\prime}\right)(v)=a v a^{\prime}$ for a, a^{\prime} in A and v in $V_{A}(B)$ is an isomorphism and $V_{A}(B)$ is a finitely generated projective C-module [7, Theorem 1.1].

Recently K. Sugano [8] has pointed out that H-separable extensions of B have close connections with Gabriel topologies on B. He showed, among other things, that if A is left flat and H-separable over B then $V_{A}\left(V_{A}(B)\right)$ is isomorphic to the localization of B with respect to the right Gabriel topology consisting of all right ideals \mathfrak{b} of B such that $\mathfrak{b} A=A$, where $V_{A}\left(V_{A}(B)\right)$ denotes the double commutator of B in A. Using this he then showed that if A is H-separable over B and B is regular then $B=V_{A}\left(V_{A}(B)\right)$.

Motivated by his results we shall study in this paper H-separable extensions of B from the point of view of torsion theories. We shall begin with the study of the torsion class

$$
T=\left\{M_{B} \mid M \otimes_{B} A=0\right\}
$$

of mod- B. If ${ }_{B} A$ is flat, then T is hereditary. This assumption, however, is not necessary for T to be hereditary. We shall introduce the notion of weakly flat B-modules and show that the weakly flatness of A ensures T to be hereditary. We shall provide an example to show that not all weakly flat modules are flat. It is shown in case A is H-separable over B a necessary and sufficient condition for $B \rightarrow V_{A}\left(V_{A}(B)\right)$ to be a right flat epimorphism (Theorem 3.9) and also one for $B=V_{A}\left(V_{A}(B)\right.$) to hold (Theorem 3.12).

We shall use M_{B} to denote a right B-module M and $M^{\prime} \leqq M$ a submodule M^{\prime} of M. Consequently $\mathfrak{a} \leqq B_{B}$ means that \mathfrak{a} is a right ideal of B. For undefined notions about torsion theory we shall refer to [6]. For a right

