On pseudo-product graded Lie algebras

Tomoaki YATSUI (Received April 13, 1987, Revised April 27, 1988)

Introduction.

For several years, N. Tanaka has worked on the geometry of pseudoproduct manifolds in connection with the geometric study of systems of k-th order ordinary differential equations, where $k \ge 2$. A study in this line can be found in his recent paper [6]. His theory shows that the geometry is closely related to the study of pseudo-product graded Lie algebras, which we will explain later on.

The main purpose of this paper is to prove structure theorems on some restricted types of pseudo-product graded Lie algebras.

Let $\mathfrak{m} = \bigoplus_{p < \mathfrak{o} \mathfrak{g}_p}$ be a graded Lie algebra with $0 < \dim \mathfrak{m} < \infty$. Then \mathfrak{m} is called a fundamental graded Lie algebra or simply an FGLA, if m is generated by g_{-1} . Let e and f be subspaces of g_{-1} . Then the triplet (m; e, f) is called a pseudo-product FGLA if the following conditions are satisfied:

(1)m is an FGLA. (2)

 $\mathfrak{g}_{-1} = \mathfrak{e} \oplus \mathfrak{f}$ and $[\mathfrak{e}, \mathfrak{e}] = [\mathfrak{f}, \mathfrak{f}] = \{0\}$

A pseudo-product FGLA (m; e, f) is called non-degenerate, if the condition " $x \in g_{-1}$ and $[x, g_{-1}] = \{0\}$ " implies x = 0.

Now let $g = \bigoplus_{p \in \mathbb{Z}} g_p$ be a graded Lie algebra and let e and f be subspaces of \mathfrak{g}_{-1} . Set $\mathfrak{m} = \bigoplus_{p < 0} \mathfrak{g}_p$. Then \mathfrak{g} (together with \mathfrak{e} and \mathfrak{f}) is called a pseudoproduct graded Lie algebra if the following conditins are satisfied:

- (1)(m; e, f) is a pseudo-product FGLA.
- g is transitive, i. e. the condition " $p \ge 0$, $x \in g_p$ and $[x, g_{-1}] = \{0\}$ " (2)implies x=0.
- (3) $[g_0, e] \subset e \text{ and } [g_0, f] \subset f$

Let (m; e, f) be an FGLA and g_0 be its derivations of the graded Lie algebra m leaving both e and f invariant. Then the prolongation $\check{g} = \bigoplus_{p \in \mathbb{Z}} \check{g}_p$ of the pair $(m; g_0)$ is called the prolongation of (m; e, f) (see [4] and [6]), which may be characterized as the maximum pseudo-product graded Lie algebra $\mathfrak{g} = \bigoplus_{p \in \mathbb{Z}} \mathfrak{g}_p$ such that $\bigoplus_{p \leq 0} \mathfrak{g}_p = \mathfrak{m} \bigoplus_{q \in \mathbb{Q}} \mathfrak{g}_0$ (as graded Lie algebras). It is known that if $(\mathfrak{m}; \mathfrak{e}, \mathfrak{f})$ is non-degenerate, then $\check{\mathfrak{g}}$ is of finite dimension (see