A certain logmodular algebra and its Gleason parts

Kazuo KISHI

(Received August 26, 1987, Revised October 26, 1987)

Abstract. Let A be a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) and let $H^{\infty} = H^{\infty}(m)$ be the weak-* closure of A in $L^{\infty}(m)$. The first objective of this paper is to study the maximal ideal space $M(H^{\infty})$ of H^{∞} with a special regard to the algebraic direct sum decomposition $H^{\infty} = \mathscr{H}^{\infty} \oplus I^{\infty}$, where I^{∞} is an ideal of H^{∞} appared in [14].

The second objective of this paper is to study a certain logmodular algebra A on a compact space X and its maximal ideal space M(A) in connection with an abstract Hardy algebra H^{∞} associated with A.

§1. Introduction.

We denote by B a complex commutative Banach algebra with a unit, and by B^{-1} the group of invertible elements in B. We denote by M(B) the maximal ideal space of B. We denote by \hat{f} the Gelfand transform of $f \in B$, by \hat{B} the set $\{\hat{f}: f \in B\}$, and by $\Gamma(B)$ the Shilov boundary of B. We often write f for \hat{f} , since the meaning will be clear from the context.

In § 3 and § 4, we denote by A a weak-* Dirichlet algebra on a nontrivial probability measure space (X, \mathscr{A}, m) , and by $H^{\infty} = H^{\infty}(m)$ the weak-* closure of A in $L^{\infty}(m)$. We will often denote by m the complex homomorphism of H^{∞} which is determined by the measure m. Let J^{∞} be the weak-* closed linear span of all functions in H^{∞} , each of which vanishes on some set of positive measure. Then J^{∞} is an ideal of H^{∞} which is contained in $H_m^{\infty} = \{f \in H^{\infty} : \int f dm = 0\}$. In [14], we call J^{∞} the typical ideal. In [14], we have established a decomposition $H^{\infty} = \mathscr{H}^{\infty} \oplus I^{\infty}$ with I^{∞} , a spacific ideal of H^{∞} with $I^{\infty} \subset J^{\infty}$, where \oplus denotes the algebraic direct sum (see § 2). Let \mathscr{L}^{∞} (resp. N^{∞}) be the weak-* closure of $\mathscr{H}^{\infty} + \widetilde{\mathscr{H}^{\infty}}$ (resp. $I^{\infty} + \overline{I^{\infty}}$) (the bar denotes conjugation). Let $\widetilde{X} = M(L^{\infty}(m))$, $Y = \Gamma(H^{\infty}|\text{hull }I^{\infty})$ and let $E(I^{\infty})$ be the support set of I^{∞} . For $\phi \in Y$, let $\mathscr{H}(\phi) = \{\widetilde{x} \in \widetilde{X} : f(\widetilde{x}) = \phi(f) \quad \forall f \in \mathscr{L}^{\infty}\}$. For any measurable set E of X, χ_{E} denotes the characteristic function of E. For any set E of a topological space X, \overline{E} denotes the closure of E in X.

In §3, we obtain the following. (i) $\phi \in \text{hull } I^{\infty}$ belongs to Y if and only if $|\phi(f)|=1$ for every inner function f in \mathscr{H}^{∞} . (ii) Theorem 3.5.