Nevanlinna and Smirnov classes on the upper half plane

Nozomu MOCHIZUKI (Received September 10, 1990)

1. Introduction and notations

The Nevanlinna and Smirnov classes defined on the unit disk U in Cwill be denoted by N(U) and $N_*(U)$, respectively. In this paper, we shall define the Nevanlinna class, $N_0(D)$, and the Smirnov class, $N_*(D)$, on $D := \{z \in C | \text{Im } z > 0\}$. Yanagihara and Nakamura [10, 8. (3)] posed a problem to introduce the Smirnov class on D; our treatment will be an answer. We let $N_0(D)$ consist of all holomorphic functions f on D such that

$$d(f, 0): = \sup_{y>0} \int_{R} \log (1 + |f(x + iy)|) dx < +\infty,$$

and we let $N_*(D)$ consist of f such that $\log (1+|f(z)|) \leq P[\phi](z) (z \in D)$ for some $\phi \in L^1(\mathbb{R})$, $\phi \geq 0$, where the right side means the Poisson integral. $N_0(D)$ is an algebra over C and $N_*(D)$ is its subalgebra. First we prove a factorization theorem for functions in $N_0(D)$, as Krylov [4] does for functions in the class \mathfrak{N} . \mathfrak{N} is defined by L^1 -boundedness of $\log^+|f(x+iy)|$ and, since $1 \in \mathfrak{N}$ and $2 \in \mathfrak{N}$, this is not a vector space. N(U) and $N_*(U)$ have remarkable topological properties, as shown by Shapiro and Shields [6] and Roberts [5]. We shall show that our classes have very similar properties. On the other hand, it will be proved that $N_0(D)$ and $N_*(D)$ cannot be linearly isometric to N(U) and $N_*(U)$, respectively, in contrast to the fact that $H^p(D)$ are linearly isometric to $H^p(U)$ for all p, 0 $<math>+\infty$.

We denote by σ the normalized Lebesgue measure on T, the unit circle in C. Let $\Psi(z) = (z-i)(z+i)^{-1} (z \in \overline{D})$. Let ν be a real measure on T. Then there corresponds a finite real measure μ on R such that

$$\int_{\boldsymbol{R}} h(t) d\mu(t) = \int_{T^*} (h \circ \Psi^{-1})(\eta) d\nu(\eta) \quad (h \in C_c(\boldsymbol{R})),$$

where $T^* = T \setminus \{1\}$. Denoting the kernel $(\eta + w)(\eta - w)^{-1}$ by $H(w, \eta) ((w, \eta) \in U \times T)$, we can write