Nevanlinna and Smirnov classes on the upper half plane

Nozomu Mochizuki

(Received September 10, 1990)

1. Introduction and notations

The Nevanlinna and Smirnov classes defined on the unit disk U in \boldsymbol{C} will be denoted by $N(U)$ and $N_{*}(U)$, respectively. In this paper, we shall define the Nevanlinna class, $N_{0}(D)$, and the Smirnov class, $N_{*}(D)$, on $D:=\{z \in \boldsymbol{C} \mid \operatorname{Im} z>0\}$. Yanagihara and Nakamura [10, 8. (3)] posed a problem to introduce the Smirnov class on D; our treatment will be an answer. We let $N_{0}(D)$ consist of all holomorphic functions f on D such that

$$
d(f, 0):=\sup _{y>0} \int_{R} \log (1+|f(x+i y)|) d x<+\infty,
$$

and we let $N_{*}(D)$ consist of f such that $\log (1+|f(z)|) \leqq P[\phi](z)(z \in D)$ for some $\phi \in L^{1}(\boldsymbol{R}), \phi \geqq 0$, where the right side means the Poisson integral. $N_{0}(D)$ is an algebra over \boldsymbol{C} and $N_{*}(D)$ is its subalgebra. First we prove a factorization theorem for functions in $N_{0}(D)$, as Krylov [4] does for functions in the class $\mathfrak{R} . \mathfrak{R}$ is defined by L^{1}-boundedness of $\log ^{+}|f(x+i y)|$ and, since $1 \in \mathfrak{R}$ and $2 \notin \mathfrak{R}$, this is not a vector space. $N(U)$ and $N_{*}(U)$ have remarkable topological properties, as shown by Shapiro and Shields [6] and Roberts [5]. We shall show that our classes have very similar properties. On the other hand, it will be proved that $N_{0}(D)$ and $N_{*}(D)$ cannot be linearly isometric to $N(U)$ and $N_{*}(U)$, respectively, in contrast to the fact that $H^{p}(D)$ are linearly isometric to $H^{p}(U)$ for all $p, 0<p \leqq$ $+\infty$.

We denote by σ the normalized Lebesgue measure on T, the unit circle in C. Let $\Psi(z)=(z-i)(z+i)^{-1}(z \in \bar{D})$. Let ν be a real measure on T. Then there corresponds a finite real measure μ on \boldsymbol{R} such that

$$
\int_{\boldsymbol{R}} h(t) d \mu(t)=\int_{T^{*}}\left(h \circ \Psi^{-1}\right)(\eta) d \nu(\eta) \quad\left(h \in C_{c}(\boldsymbol{R})\right),
$$

where $\quad T^{*}=T \backslash\{1\}$. Denoting the kernel $(\eta+w)(\eta-w)^{-1}$ by $H(w, \eta)$ $((w, \eta) \in U \times T)$, we can write

