An existence theorem of foliations with singularities A_k , D_k and E_k

Dedicated to Professor Masahisa Adachi on his 60th birthday

Yoshifumi ANDO (Received June 26, 1990, Revised November 30, 1990)

§1. Introduction

In this paper a smooth (C^{∞}) singular foliation \mathscr{H} of codimension q on a smooth manifold N of dimension n means an equivalence class of an open covering $\{V_s\}_{s\in I}$ of N and a family of smooth maps $\phi_s: V_s \to \mathbb{R}^q$ and C^{∞} -diffeomorphisms $h_{st}(x)$ for $s, t \in I$ and each $x \in V_s \cap V_t$ satisfying cocycle conditions (c. f. [9]). Recall the singularities A_k , D_k , and E_k of smooth functions in [4] and denote one of them by X_k for simplicity. It is known that there exist the submanifolds ΣX_k in $J^{\infty}(N, \mathbb{R}^q)$ such that a smooth map germ $\phi: (N, x) \to (\mathbb{R}^q, y)$ is C^{∞} equivalent to a C^{∞} stable unfolding of a smooth function germ with singularity of type X_k at the corresponding point if and only if the infinite jet map $j\phi: N \to J^{\infty}(N, \mathbb{R}^q)$ is transverse to ΣX_k and $j\phi(x) \in \Sigma X_k$. ΣA_k is the well known Boardman manifold $\Sigma^{n-q+1,1,\dots,1,0}$ in [5] and see the difinition of ΣD_k and ΣE_k in [3]. So we say in this paper that a point x of N is a singular point of type X_k of \mathscr{H} if $x \in V_s$ for some $s \in I$ and $j\phi_s(x)$ belongs to ΣX_k in $J^{\infty}(V_s, \mathbb{R}^q)$.

The purpose of this paper is to reduce an existence problem of a smooth singular foliation having a class of given singularities of type A_k , D_k and E_k to a homotopy-theoretic one. The result will be stated in a formulation motivated by [7] and [11].

Let *P* be another smooth manifold of dimension p with smooth (nonsingular) foliation \mathscr{F} of codimension *q* represented by a covering $\{U_i\}_{i\in J}$ of *P* and a family of smooth maps $\psi_i: U_i \to \mathbb{R}^q$. We define the submanifold $\Sigma X_k(\mathscr{F})$ in $J^{\infty}(N, P)$ as follows. Let $j(\psi_i): J^{\infty}(N, U_i) \to J^{\infty}(N, R^q)$ be the induced submersion of ψ_i mapping a jet z=jf(x) onto $j(\psi_i \circ f)$ (x) and $j(u_i): J^{\infty}(N, U_i) \to J^{\infty}(N, P)$ be the induced jet map of the inclusion u_i of U_i into *P*. Then we set $\Sigma X_k(\mathscr{F})$ is the union of all submanifolds $j(u_i)(j(\psi_i)^{-1}(\Sigma X_k))$ for all $i \in J$. It does not depend on the choice of $\{U_i, \psi_i\}$. Let $\Omega(\mathscr{F})$ be any open subbundle of $J^{\infty}(N, P)$ consisting of a number of (possibly infinite) submanifolds $\Sigma X_k(\mathscr{F})$ and of all