Theorem of Busemann-Mayer on Finsler metrics

To Professor Noboru Tanaka on his sixtieth birthday

Shoshichi KOBAYASHI* (Received January 12, 1990)

1. Introduction

Let X be a manifold and TX its tangent bundle. A pseudo-length function on X is a real valued nonnegative function F on TX satisfying the condition

(1)
$$F(c\xi) = |c|F(\xi)$$
 for $\xi \in TX$, $c \in \mathbb{R}$.

If $F(\xi) > 0$ for every nonzero ξ , then F is called a *length function*.

If $\xi \in T_x X$, we write sometimes (x, ξ) for ξ although x is redundant. Similarly, we write occasionally $F(x, \xi)$ for $F(\xi)$. When we are working in a coordinate neighborhood U with a natural identification $TU \cong U \times \mathbf{R}^n$, the notation $F(x, \xi)$ is more convenient as well as traditional since ξ may be used to denote an element of \mathbf{R}^n as well as an element of TU.

We say that F is *convex* if it defines a pseudo-norm on each tangent space T_xX , $x \in X$, i.e., if

(2)
$$F(\xi + \xi') \le F(\xi) + F(\xi') \quad \text{for } \xi, \xi' \in T_x X.$$

A convex length function is usually called a Finsler metric.

Given a pseudo-length function F, its *indicatrix* Γ_x at $x \in X$ is defined to be

(3)
$$\Gamma_x = \{ \xi \in T_x X ; F(\xi) \le 1 \}.$$

Then Γ_x is (1) star shaped in the sense that if $\xi \in \Gamma_x$ then $c\xi \in \Gamma_x$ for $|c| \le 1$ and is (2) nontrivial in every direction in the sense that for every $\xi \in T_x X$ there is a nonzero c such that $c\xi \in \Gamma_x$.

Conversely, given a subset Γ_x in each tangent space T_xX satisfying the two conditions above, we can construct a pseudo-length function F by

(4)
$$F(\xi) = \inf\{c > 0; \frac{\xi}{c} \in \Gamma_x\}$$
 for $\xi \in T_x X$.

^{*} Partially supported by NSF Grant DMS-880131.