A unit group in a character ring of an alternating group II

Kenichi YamaUCHI

(Received November 19, 1991)

1. Introduction

Throughout this paper, G denotes always a finite group, Z the ring of rational integers, Q the field of rational numbers, C the field of complex numbers. In addition, we fix the following notations.
$R(G)$; a character ring of G
$U(R(G))$; a unit group of $R(G)$
$U_{f}(R(G))$; the subgroup of $U(R(G))$ which consists of units of finite order in $R(G)$
S_{n}, A_{n}; a symmetric group and an alternating group on n symbols respectively for a natural number n.
In the paper of [6], we proved the following theorem.
Theorem 1.1. $\quad \operatorname{rank} U\left(R\left(A_{n}\right)\right) /\{ \pm 1\}=c(n)$.
(See Definition 2.3 concerning a number $c(n)$)
In section 3, we will construct $c(n)$ units $\psi_{1}, \ldots, \psi_{c(n)}$ in $R\left(A_{n}\right)$ and show that $U^{2}\left(R\left(A_{n}\right)\right) \subseteq\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$, where $U^{2}\left(R\left(A_{n}\right)\right)=\left\{\psi^{2} \mid \psi \in U\left(R\left(A_{n}\right)\right)\right\}$ and $\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle$ is an abelian subgroup of $U\left(R\left(A_{n}\right)\right)$ generated by ψ_{1}, \ldots, $\psi_{c(n)}$. (See Theorem 3.4.). It is easily proved that rank $\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle=c$ (n). (See the proof of Lemma 4.1 of [6]), and so Theorem 1.1 is a direct consequence of the above result.

For a given unit ψ in $R\left(A_{n}\right)$, we will give the necessary and sufficient condition on which ψ is the difference of two irreducible C-characters of A_{n}. (See Theorem 3.6.)

In section 4, as an application of the above results, we will state some examples such that the equation $\{ \pm 1\} \times\left\langle\psi_{1}, \ldots, \psi_{c(n)}\right\rangle=U\left(R\left(A_{n}\right)\right)$ holds, by the way of finding generators of $U\left(R\left(A_{n}\right)\right)$ concretely, and we will also give the example such that a unit in $R\left(A_{n}\right)$ is the difference of two irreducible C-characters of A_{n}.

Now we pay attention to the fact that for $n=3,4, U\left(R\left(A_{n}\right)\right)=U_{f}(R$ $\left.\left(A_{n}\right)\right)=\left\{ \pm \chi_{1}, \pm \chi_{2}, \pm \chi_{3}\right\}$, where χ_{1}, χ_{2}, and χ_{3} are the linear characters of

