Cohen-Macaulay types of Hall lattices

Hideaki Morita

(Received November 8, 1995)

Abstract

The submodule lattice of a finite modules over a discrete valuation ring is called the Hall lattice. In this paper, extending the previous work [7], we consider CohenMacaulay types of Hall lattices and show that they are polynomials in q (q is the number of elements of the residue field of the discrete valuation ring) with integer coefficients.

Key words: Stanley-Reisner rings, Cohen-Macaulay posets, Möbius functions, partitions, Hall polynomials, Gaussian polynomials.

1. Introduction

In this section, we summarize basic definitions and results about partially ordered sets (posets, for short) and Stanley-Reisner rings. We begin with the definition of Stanley-Reisner rings of finite posets and CohenMacaulay types of them. See [2], [3], [8] for precise informations.

Let P be a poset. In this paper, the cardinality $\sharp P$ of a poset P is always finite. We consider a polynomial ring $A=K[x \mid x \in P]$ over a field K whose indeterminates are the elements of P. Let I be the ideal of A generated by the set of all the monomials $\{x y \in A \mid x \in P$ and $y \in P$ are incomparable. $\}$. The quotient ring A / I is called the Stanley-Reisner ring of P over K. A finite free resolution of $K[P]$ over A is an exact sequence of A-modules

$$
0 \longrightarrow F_{h} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow K[P] \longrightarrow 0,
$$

where each F_{i} is a free A-module of finite rank r_{i}. Here we can minimize h and all r_{i} 's simultaneously [2]. The minimal one is called the minimal free resolution of $K[P]$ over A. The minimal free resolution always exists and is uniquely determined. Minimal free resolutions are one of a main interest in the commutative ring theory for a reason that we can compute the Hilbert function of a ring from that [2, p.151]. If the above sequence is a minimal free resolution of $K[P]$ over A, then $\beta_{i}=\operatorname{rank} F_{i}$ is called the i-th Betti number and $h=\operatorname{hd}_{A}(K[P])$ the homological dimension of $K[P]$ over A.

The homological dimension $\mathrm{hd}_{A}(K[P])$ is estimated as follows. Let v be

[^0]
[^0]: 1991 Mathematics Subject Classification : 06A08.

