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Cohen-Macaulay types of Hall lattices
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Abstract. The submodule lattice of a finite modules over a discrete valuation ring is
called the Hall lattice. In this paper, extending the previous work [7], we consider Cohen-
Macaulay types of Hall lattices and show that they are polynomials in q(q is the number
of elements of the residue field of the discrete valuation ring) with integer coefficients.
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1. Introduction

In this section, we summarize basic definitions and results about par-
tially ordered sets (posets, for short) and Stanley-Reisner rings. We be-
gin with the definition of Stanley-Reisner rings of finite posets and Cohen-
Macaulay types of them. See [2], [3], [8] for precise informations.

Let P be a poset. In this paper, the cardinality \# P of a poset P is always
finite. We consider a polynomial ring A=K[x|x\in P] over a field K whose
indeterminates are the elements of P . Let I be the ideal of A generated by
the set of all the monomials {xy\in A|x\in P and y\in P are incomparable.}.
The quotient ring A/I is called the Stanley-Reisner ring of P over K . A
finite free resolution of K[P] over A is an exact sequence of A-modules

0arrow F_{h}arrow arrow F_{1}arrow F_{0}arrow K[P]arrow 0 ,

where each F_{i} is a free A-module of finite rank r_{i} . Here we can minimize h
and all r_{i} ’s simultaneously [2]. The minimal one is called the minimal free
resolution of K[P] over A . The minimal free resolution always exists and is
uniquely determined. Minimal free resolutions are one of a main interest in
the commutative ring theory for a reason that we can compute the Hilbert
function of a ring from that [2, p.151]. If the above sequence is a minimal
free resolution of K[P] over A, then \beta_{i}=rankF_{i} is called the i-th Betti
number and h=hd_{A}(K[P]) the homological dimension of K[P] over A .

The homological dimension hd_{A}(K[P]) is estimated as follows. Let v be
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