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On the scattering theory for the cubic nonlinear
Schr\"odinger and Hartree type equations in

one space dimension
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Abstract. We study the scattering problem and asymptotics for large time of solutions
to the Cauchy problem for the nonlinear Schr\"odinger and Hartree type equations wit h

subcritical nonlinearities

\{

iu_{t}+ \frac{1}{2}u_{xx}=f(|u|^{2})u , (t, x)\in R^{2}

u(0, x)=u_{0}(x) , x\in R ,

where the nonlinear interaction term is f(|u|^{2})=V*|u|^{2} , V(x)=\lambda|x|^{-\delta} , \lambda\in R ,
0<\delta<1 in the Hartree type case, or f(|u|^{2})=\lambda|t|^{1-\delta}|u|^{2} in the case of the cubic
nonlinear Schr\"odinger equation. We suppose that the initial data e^{\beta|x|}u0\in L^{2} , \beta>0

with sufficiently small norm \epsilon=||e^{\beta|x|}u_{0}||_{L^{2}} . Then we prove the sharp decay estimate
||u(t)||_{L^{p}}\leq C\epsilon t^{\frac{1}{p}-\frac{1}{2}} , for all t\geq 1 and for every 2\leq p\leq\infty . Furthermore we show that
for \frac{1}{2}<\delta<1 there exists a unique final state \hat{u}+\in L^{2} such that for all t\geq 1

||u(t)- exp (- \frac{it^{1-\delta}}{1-\delta}f(|\hat{u}_{\dagger}|^{2})(\frac{x}{t}))U(t)u_{\dagger}||_{L^{2}}=O(t^{1-2\delta})

and uniformly with respect to x

u(t, x)= \frac{1}{(it)^{\frac{1}{2}}}\hat{u}_{+}(\frac{x}{t}) exp ( \frac{ix^{2}}{2t}-\frac{it^{1-\delta}}{1-\delta}f(|\hat{u}_{+}|^{2})(\frac{x}{t}))+O(t^{1/2-2\delta}) ,

where \hat{\phi} denotes the Fourier transform of \phi . Our results show that the regularity condition
on the initial data which was assumed in the previous paper [9] is not needed. Also a
smoothing effect for the solutions in an analytic function space is discussed.
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1. Introduction

We study the asymptotic behavior for large time of solutions to the
Cauchy problem

\{

i \partial_{t}u=-\frac{1}{2}\partial_{x}^{2}u+f(|u|^{2})u , (t, x)\in R^{2} ,

u(0, x)=u_{0}(x) , x\in R ,
(1.1)
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