Higher Specht polynomials for the complex reflection group $G(r, p, n)$

(To Professor Takeshi Hirai on his sixtieth birthday)
H. Morita and H.-F. Yamada
(Received December 16, 1996; Revised December 12, 1997)

Abstract

A basis of the quotient ring P / J_{+}is given, where P is the ring of polynomials and J_{+}is the ideal generated by the fundamental invariants under the action of the complex reflection group $G(r, p, n)$.

Key words: complex reflection groups, coinvariant rings, Clifford theory, tableaux.

1. Introduction

This note is concerned with a certain graded module over the imprimitive complex reflection group $G(r, p, n)$ [ST]. The group $G(r, p, n)(r, p, n$ $\geq 1, p \mid r)$ consists of the monomial matrices whose nonzero entries are of the form $\zeta^{j}(0 \leq j<r)$ and such that the d-th power of the product of all nonzero entries is equal to 1 , where we denote by ζ a primitive r-th root of 1 , and $d=r / p$. In some special cases, $G(r, p, n)$ is isomorphic to the Weyl group:

$$
\begin{aligned}
& G(1,1, n)=W\left(A_{n-1}\right), \\
& G(2,1, n)=W\left(B_{n}\right)=W\left(C_{n}\right), \\
& G(2,2, n)=W\left(D_{n}\right), \\
& G(6,6,2)=W\left(G_{2}\right) .
\end{aligned}
$$

Also it is naturally identified as a normal subgroup of the wreath product

$$
G(r, n)=(\mathbf{Z} / r \mathbf{Z}) \backslash S_{n}=\left\{\left(\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} ; \sigma\right) \mid i_{k} \in \mathbf{N}, \sigma \in S_{n}\right\}
$$

whose product is given by

$$
\left(\zeta^{i_{1}}, \ldots, \zeta^{i_{n}} ; \sigma\right)\left(\zeta^{j_{1}}, \ldots, \zeta^{j_{n}} ; \tau\right)=\left(\zeta^{i_{1}+j_{\sigma}-1}(1), \ldots, \zeta^{i_{n}+j_{\sigma}-1(n)} ; \sigma \tau\right) .
$$

