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A periodic boundary value problem for a generalized
2D Ginzburg-Landau equation
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Abstract. This article studies the periodic boundary value problem for a generalized
Ginzburg-Landau equation with additional fifth order term and cubic terms containing

spatial derivatives. We present sufficient condition for global existence. A blow-up of

solutions is found via numerical simulation.
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1. Introduction

The classical one-dimensional Ginzburg-Landau equation (GL)

u_{t}=(\nu+i\alpha)u_{xx}-(\kappa+i\beta)|u|^{2}u+\gamma u (1-1)

frequently occurs as the leading term in an asymptotic expansion of the
slowly varying envelope of solutions for such “exact” models such as the
Navier-Stocks equations [1]. If \kappa<0 then as \gamma increases, (1-1) with peri-
odical boundary condition undergoes a subcritical bifurcation after which
almost all solutions become unbounded in finite time. It is also of physical
interest (see [2-4] for details) to carry the expansion to second order in case
of small \kappa . This leads to the resulting generalized GL [5].

u_{t}=\alpha_{0}u+\alpha_{1}u_{xx}+\alpha_{2}|u|^{2}u+\alpha_{3}|u|^{2}u_{x}+\alpha_{4}u^{2}\overline{u}_{x}+\alpha_{5}|u|^{4}u (1-2)

where \alpha_{j}=a_{j}+ib_{j} are all complex parameters (though we note that \alpha_{0}

can be regarded as real since the complex part can be eliminated via a
simple transformation). If a_{1}>0>a_{5} and -4a_{1}a_{5}>(b_{3}-b_{4})^{2} then
(1-2) possesses a global classical solution u(t)\in C([0, \infty);H_{per}^{1}[0, L])\cap

C^{1}((0, \infty);H_{per}^{1}[0, L]) for every u(0)\in H_{per}^{1}[0, L][2] . It has been found
that the cubic terms involving partial derivatives can significantly slow the
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