On the class of univalent functions starlike with respect to N-symmetric points

I. R. Nezhmetdinov and S. Ponnusamy

(Received March 21, 2000)

Abstract

In the present paper we study certain generalizations of the class $\mathcal{S S P}_{N}$ of functions starlike with respect to N-symmetric points. We obtain a structural formula for functions in $\mathcal{S S} \mathcal{P}_{N}$, and deduce a sharp lower bound for $\left|f^{\prime}(z)\right|$ when N is even (this case completes the distortion theorem for $\mathcal{S S P}_{N}$). Improved estimates for Koebe constants are also given. Further, it is proved that for any $N \geq 2$ the class $\mathcal{S S P}_{N}$ contains non-starlike functions. Finally, we characterize the class $\mathcal{S S P}_{N}$ in terms of Hadamard convolution.

Key words: univalent, starlike, close-to-convex and convex functions.

1. Introduction and main results

Denote by \mathcal{A} the class of all functions f, analytic in the unit disc Δ and normalized by $f(0)=f^{\prime}(0)-1=0$. Let \mathcal{S} be the class of functions in \mathcal{A} that are univalent in Δ. A function $f \in \mathcal{A}$ is said to be starlike with respect to symmetric points [8] if for any r close to $1, r<1$, and any z_{0} on the circle $|z|=r$, the angular velocity of $f(z)$ about the point $f\left(-z_{0}\right)$ is positive at z_{0} as z traverses the circle $|z|=r$ in the positive direction, i.e.,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f\left(-z_{0}\right)}\right)>0, \quad \text { for } z=z_{0}, \quad|z|=r .
$$

Denote by $\mathcal{S S P}$ the class of all functions in \mathcal{S} which are starlike with respect to symmetric points and, functions f in this class is characterized by

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)-f(-z)}\right)>0, \quad z \in \Delta
$$

We also have the following generalization of the class $\mathcal{S S P}$ introduced by K. Sakaguchi [8]. For $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in \mathcal{A}$, set

$$
\mathcal{S S P}_{N}=\left\{f \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f_{N}(z)}\right)>0, \quad z \in \Delta\right\}
$$

