Notes on commutators and Morrey spaces

Yasuo KOMORI and Takahiro MIZUHARA

(Received December 17, 2001; Revised May 24, 2002)

Abstract. We show that the commutator $[M_b, I_\alpha]$ of the multiplication operator M_b by b and the fractional integral operator I_α is bounded from the Morrey space $L^{p,\lambda}(\mathbb{R}^n)$ to the Morrey space $L^{q,\lambda}(\mathbb{R}^n)$ where $1 , <math>0 < \alpha < n$, $0 < \lambda < n - \alpha p$ and $1/q = 1/p - \alpha/(n - \lambda)$ if and only if b belongs to $BMO(\mathbb{R}^n)$.

Key words: commutator, fractional integral, Morrey space.

1. Introduction

Let I_{α} , $0 < \alpha < n$, be the fractional integral operator defined by

$$I_{\alpha}f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy.$$

We consider the commutator

$$[M_b, I_\alpha]f(x) = b(x)I_\alpha f(x) - I_\alpha(bf)(x), \qquad b \in L^1_{\text{loc}}(\mathbb{R}^n).$$

Chanillo [1] and the first author [7] obtained the necessary and sufficient condition for which the commutator $[M_b, I_\alpha]$ is bounded on $L^p(\mathbb{R}^n)$. Di Fazio and Ragusa [4] obtained the necessary and sufficient condition for which the commutator $[M_b, I_\alpha]$ is bounded on Morrey spaces for some α .

In this paper we refine their results in [4] by using the duality argument and the factorization theorem for $H^1(\mathbb{R}^n)$ (Theorem 2). Our proof is different from the one in [4].

2. Definitions and Notations

For a set $E \subset \mathbb{R}^n$ we denote the characteristic function of E by χ_E and |E| is the Lebesgue measure of E.

We denote a ball of radius t centered at x by $B(x, t) = \{y; |x - y| < t\}.$

Definition 1 Let $1 \le p < \infty$, $\lambda \ge 0$. We define the classical Morrey space by

²⁰⁰¹ Mathematics Subject Classification : Primary 42B20.