How to Determine the Sign of a Valuation on $\mathbb{C}[x, y]$

Pinaki Mondal

Abstract

Given a divisorial discrete valuation centered at infinity on $\mathbb{C}[x, y]$, we show that its sign on $\mathbb{C}[x, y]$ (i.e. whether it is negative or nonpositive on $\mathbb{C}[x, y] \backslash \mathbb{C})$ is completely determined by the sign of its value on the last key form (key forms being the avatar of key polynomials of valuations [Mac36] in "global coordinates"). We also describe the cone of curves and the nef cone of certain compactifications of \mathbb{C}^{2} associated with a given valuation centered at infinity and give a characterization of the divisorial valuations centered at infinity whose skewness can be interpreted in terms of the slope of an extremal ray of these cones, yielding a generalization of a result of [FJ07]. A byproduct of these arguments is a characterization of valuations that "determine" normal compactifications of \mathbb{C}^{2} with one irreducible curve at infinity in terms of an associated "semigroup of values".

1. Introduction

Notation 1.1. Throughout this section, k is a field, and R is a finitely generated k-algebra.

In algebraic (or analytic) geometry and commutative algebra, valuations are usually treated in the local setting, and the values are always positive or nonnegative. Even if it is a priori not known if a given discrete valuation v is positive or nonnegative on $R \backslash k$, it is evident how to verify this, at least if $v(k \backslash\{0\})=0$: we have only to check the values of v on the k-algebra generators of R. For valuations centered at infinity however, in general, it is nontrivial to determine if it is negative or nonpositive on $R \backslash k$:

Example 1.2. Let $R:=\mathbb{C}[x, y]$, and for every $\varepsilon \in \mathbb{R}$ with $0<\varepsilon<1$, let ν_{ε} be the valuation (with values in \mathbb{R}) on $\mathbb{C}(x, y)$ defined as follows:

$$
\begin{align*}
& v_{\varepsilon}(f(x, y)):=-\operatorname{deg}_{x}\left(\left.f(x, y)\right|_{\left.y=x^{5 / 2}+x^{-1}+\xi x^{-5 / 2-\varepsilon}\right)}\right) \\
& \quad \text { for all } f \in \mathbb{C}(x, y) \backslash\{0\}, \tag{1}
\end{align*}
$$

where ξ is a new indeterminate, and deg_{x} is the degree in x. A direct computation shows that

$$
\begin{aligned}
v_{\varepsilon}(x) & =-1, & v(y)=-5 / 2 \\
v_{\varepsilon}\left(y^{2}-x^{5}\right) & =-3 / 2, & v_{\varepsilon}\left(y^{2}-x^{5}-2 x^{-1} y\right)=\varepsilon
\end{aligned}
$$

[^0]
[^0]: Received December 24, 2013. Revision received December 20, 2016.

