Pretzel Knots with L-Space Surgeries

Tye Lidman \& Allison H. Moore

Abstract

A rational homology sphere whose Heegaard Floer homology is the same in rank as that of a lens space is called an L-space. We classify pretzel knots with any number of tangles that admit L-space surgeries. This rests on Gabai's classification of fibered pretzel links.

1. Introduction

The Heegaard Floer homology of three-manifolds and its refinement for knots, knot Floer homology, have proved to be particularly useful for studying Dehn surgery questions in three-manifold topology. Recall that the knot Floer homology of a knot K in the three-sphere is a bigraded Abelian group,

$$
\widehat{\mathrm{HFK}}(K)=\bigoplus_{m, s} \widehat{\mathrm{HFK}}_{m}(K, s),
$$

introduced by Ozsváth and Szabó [OS04b] and independently by Rasmussen [Ra03]. The graded Euler characteristic is the symmetrized Alexander polynomial of K [OS04b],

$$
\Delta_{K}(t)=\sum_{s} \chi(\widehat{\mathrm{HFK}}(K, s)) \cdot t^{s} .
$$

These theories have been especially useful for studying knots that admit lens space surgeries, the classification of which has been an outstanding problem in low-dimensional topology for decades. For example, if $K \subset S^{3}$ admits a lens space surgery, then for all $s \in \mathbb{Z}$, we have $\widehat{\mathrm{HFK}}(K, s) \cong 0$ or \mathbb{Z} [OS05, Thm. 1.2]. Knot Floer homology detects both the genus of K by

$$
g(K)=\max \{s \mid \widehat{\operatorname{HFK}}(K, s) \neq 0\}
$$

[OS04a] and the fiberedness of K by whether $\widehat{\mathrm{HFK}}(K, g(K))$ is isomorphic to \mathbb{Z} [Ghi08; Ni07]. Together, these facts imply that a knot in S^{3} with a lens space surgery is fibered. Indeed, this result applies more generally to knots in S^{3} admitting L-space surgeries. Recall that a rational homology sphere Y is an L-space if $\left|H_{1}(Y ; \mathbb{Z})\right|=\operatorname{rank} \widehat{\mathrm{HF}}(Y)$, where $\widehat{\mathrm{HF}}$ is the "hat" flavor of Heegaard Floer homology. The class of L-spaces includes all lens spaces, and more generally, threemanifolds with elliptic geometry [OS05, Prop. 2.3] (or equivalently, with finite fundamental group by the Geometrization theorem; see [KL08]). A knot admitting an L-space surgery is called an L-space knot.

[^0]
[^0]: Received October 17, 2014. Revision received August 25, 2015.
 This work was supported by Research Training Group grants from the National Science Foundation [DMS-0636643 to T. L., DMS-1148490 to A. H. M.].

