Torsion in the Cohomology of Desingularized Fiber Products of Elliptic Surfaces

Chad Schoen

0. Introduction

Let W be a smooth projective threefold over an algebraically closed field k. Let l be a prime distinct from $\operatorname{char}(k)$. This paper is concerned with the problem of computing the torsion subgroup $H^{3}\left(W, \mathbb{Z}_{l}\right)_{\text {tors }}$ of the étale cohomology $H^{3}\left(W, \mathbb{Z}_{l}\right)$. Before stating the results, we recall five reasons why one is interested in this group.

1. Relationship to the Brauer group, $\operatorname{Br}(W)$. The subgroup $H^{3}\left(W, \mathbb{Z}_{l}(1)\right)_{\text {tors }}$ is canonically isomorphic to the l-primary part of the Brauer group modulo its maximal divisible subgroup [Gro, Sec. 8.3].
2. Birational invariance for smooth projective varieties [Gro, Thm. 7.4, Thm. 6.1c]. This attribute was used by Artin and Mumford [AMu] to give examples of unirational threefolds that are not rational.
3. Mirror symmetry. Take $k=\mathbb{C}$. There is tantalizing empirical evidence (see [BaKr]) that for Calabi-Yau threefolds, $H^{3}(W(\mathbb{C}), \mathbb{Z})_{\text {tors }}$ should be isomorphic to the first homology of the mirror. No natural isomorphism is currently known.
4. The integral Tate problem. Poincaré duality for a smooth projective threefold gives an isomorphism,

$$
H^{4}\left(W, \mathbb{Z}_{l}(2)\right)_{\mathrm{tors}} \simeq \operatorname{Hom}\left(H^{3}\left(W, \mathbb{Z}_{l}\right)_{\mathrm{tors}}, \mathbb{Q}_{l} / \mathbb{Z}_{l}(1)\right)
$$

An integral version of the Tate conjecture (or if $k=\mathbb{C}$, of the Hodge conjecture) would imply that $H^{4}\left(W, \mathbb{Z}_{l}(2)\right)_{\text {tors }}$ is generated by classes of codimension-2 algebraic cycles. The integral Hodge conjecture is known to hold for Fano threefolds [V] (see also [Gra]) and for Calabi-Yau threefolds [V]. It is known to fail for certain threefolds of general type [Ko], although in [Ko] $H^{4}\left(W, \mathbb{Z}_{l}(2)\right)_{\text {tors }}=0$. Some of the threefolds studied in this paper are birational to Calabi-Yau varieties but most have Kodaira dimension 1, which is unexplored territory.
5. The Abel-Jacobi map. The Abel-Jacobi map applies to algebraic cycles that are integrally homologous to zero. A consequence of Theorem 0.3(ii) is that the much-studied complex multiplication cycles have this property (cf. [ST, 3.2]).

[^0]
[^0]: Received September 28, 2011. Revision received April 27, 2012.
 Most of this work was done during visits to the Max-Planck-Insitut für Mathematik in Bonn and to the Newton Institute for Mathematical Sciences (special semester on Higher Dimensional Complex Geometry), where a first version of the manuscript was written. Revisions and additions were made at the I.H.E.S. It is a pleasure to thank these institutions for their hospitality and the N.S.F. and N.S.A. for partial support through grants DMS 99-70500 and H98230-08-1-0027.

