The Rationality of the Moduli Space of Genus-4 Curves Endowed with an Order-3 Subgroup of Their Jacobian

INGRID BAUER & ALESSANDRO VERRA

0. Introduction

Let *C* be a smooth, irreducible complex projective curve of genus *g* and let $\eta \in \text{Pic}^{0}(C)$ be a nontrivial *n*th root of the trivial bundle \mathcal{O}_{C} . For several different reasons, special attention has been paid, now and in the recent past, to the moduli spaces $\mathcal{R}_{g,n}$ of pairs (C, η) as above and to its possible compactifications (see e.g. [CapCasC]).

For instance, they are generalizations of the case n = 2, the so-called *Prym* moduli spaces, usually denoted by \mathcal{R}_g . Since they are related to the theory of Prym varieties, the interest in this case occupies a prominent position. In particular, many results on the Kodaira dimension of \mathcal{R}_g are now available, while classical geometric descriptions of \mathcal{R}_g exist for $g \leq 7$. More precisely, let us mention that Farkas and Ludwig [FLu] proved that \mathcal{R}_g is of general type for $g \geq 14$ and $g \neq 15$. On the other hand, unirational parameterizations of \mathcal{R}_g are known for $g \leq 7$ [Cat, D, Do, ILoS, Ve1, Ve2].

One can also consider the moduli spaces $\mathcal{R}_{g,\langle n \rangle}$ of pairs $(C, \mathbb{Z}/n\mathbb{Z})$, where *C* is a smooth, irreducible complex projective curve of genus *g* and $\mathbb{Z}/n\mathbb{Z}$ is a cyclic subgroup of order *n* of Pic⁰(*C*). As $\mathcal{R}_{g,\langle 2 \rangle} = \mathcal{R}_{g,2}$, these mouli spaces are generalizing the Prym moduli spaces in a (slightly) different way. In contrast to the case n = 2, not very much is known about $\mathcal{R}_{g,n}$ and $\mathcal{R}_{g,\langle n \rangle}$ for n > 2. In particular, the (probably short) list of all pairs (g, n) such that $\mathcal{R}_{g,n}$ and $\mathcal{R}_{g,\langle n \rangle}$ have negative Kodaira dimension is not known.

The rationality of $\mathcal{R}_{g,n}$ and $\mathcal{R}_{g,\langle n \rangle}$ has been proved in some cases of very low genus: the case of \mathcal{R}_4 is a result of Catanese [Cat]. The rationality of \mathcal{R}_3 was proved by Katsylo in [Ka]. Independent proofs are also due to Catanese and to Dolgachev; see [D] (also for \mathcal{R}_2). Recently, the rationality of $\mathcal{R}_{3,3}$ and of $\mathcal{R}_{3,\langle 3 \rangle}$ has been proven by Catanese and the first author [BCat].

To complete the picture, we recall that $\mathcal{R}_{1,n}$ is an irreducible curve for every prime *n* and that its geometric genus is well known.

Received September 4, 2008. Revision received May 10, 2010.

Part of this article was written while the second author was a visiting professor in Bayreuth financed by the DFG-Forschergruppe 790, *Classification of algebraic surfaces and compact complex manifolds*, and by the research program PRIN 2006-08, *Geometria delle varietá algebriche e dei loro spazi di moduli*.