Wiener's Positive Fourier Coefficients Theorem in Variants of L^p Spaces

J. M. Ash, S. Tikhonov, & J. Tung

1. Introduction

In this paper we consider spaces that are "close" to $L^p(\mathbb{T})$: L^p itself; the space of functions f with positive Fourier coefficients that have $|f|^p$ integrable near 0; the space of functions whose Fourier coefficients are in $\ell^{p'}$; the space of functions whose Fourier coefficients are in $\ell^{p'}$; the space of functions whose Fourier coefficients $\{c_n\}$ satisfy $\sum |c_n|^p n^{p-2} < \infty$; and the mixed norm spaces $\ell^{p',2}$, 1 . We shall describe several relationships between these spaces.

Let \mathbb{T} be the interval $[-\pi, \pi]$. For every $1 \le p < \infty$, we say that a measurable function f is in $L^p = L^p(\mathbb{T})$ if

$$||f||_p^p = \frac{1}{2\pi} \int_{\mathbb{T}} |f(x)|^p dx < \infty.$$

Note that $L^p \subseteq L^1$ for every $p \ge 1$. For $f \in L^1$ and for every integer *n*, let

$$\hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(x) e^{-inx} dx$$
 (1.1)

be the *n*th Fourier coefficient of f and let $\sum \hat{f}(n)e^{inx}$ be the Fourier series of f. For each p > 1, let

$$L_{\text{loc}+}^{p} = \left\{ f : \text{all } \hat{f}(n) \ge 0 \text{ and } \int_{-\delta}^{\delta} |f|^{p} \, dx < \infty \text{ for some } \delta = \delta(f) > 0 \right\}.$$

An unpublished theorem of Norbert Wiener asserts that if $f \in L^2_{loc+}$ then $f \in L^2(\mathbb{T})$. The short proof involves observing that, for each n, $\hat{f}(n) \leq a$ constant times $|\hat{hf}(n)|$, where

$$h(x) = \begin{cases} 1 - |x/\delta|, & x \in [-\delta, \delta], \\ 0, & x \in \mathbb{T} \setminus [-\delta, \delta], \end{cases}$$

so that $hf \in L^2(\mathbb{T})$. Thus $\sum |\widehat{hf}(n)|^2 < \infty$, $\sum |\widehat{f}(n)|^2 < \infty$, and $f \in L^2(\mathbb{T})$ by Parseval's theorem. Much later, Stephen Wainger remarked that $f \in L^{2n}_{loc+}$ implies $f \in L^{2n}_{loc+}$, n = 1, 2, 3, ..., but gave examples showing that $f \in L^p_{loc+}$ does not necessarily imply that $f \in L^p(\mathbb{T})$ when $1 . Next, Harold Shapiro showed that if <math>p \in (2, \infty)$ is not an even integer then $f \in L^p_{loc+}$ does not necessarily imply

Received September 17, 2008. Revision received March 2, 2009.

The third author was supported by RFFI 08-01-00302 and NSH-2787.2008.1.