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1. Introduction

A distance-transitive graph G is one upon which the automorphism group acts
transitively on ordered pairs of vertices at every fixed distance. Only connected
graphs need to be considered. Those of diameter 2 are the rank-3 graphs, whose
careful study was initiated by Donald G. Higman in his breakthrough paper [16].

A huge amount of effort has gone into the classification of all finite distance-
transitive graphs. The classification naturally breaks into two parts, primitive and
imprimitive. The main part of the problem is the classification of all finite distance-
transitive graphs with primitive automorphism group, and it appears that this clas-
sification is nearly finished. For the imprimitive case, Smith [24] showed that the
possibilities for nontrivial blocks of imprimitivity are severely limited and that a
given imprimitive distance-transitive graph can in a sense be reduced to a primi-
tive distance-transitive graph. Van Bon and Brouwer [5] and Hemmeter [14; 15]
carried through the reverse of Smith’s theorem, classifying for most of the known
primitive distance-transitive graphs any associated imprimitive distance-transitive
graphs they might have.

In [3] the present authors gave a precise version of Smith’s theorem which im-
plies that any unknown imprimitive distance-transitive graph must arise from a
primitive distance-transitive graph of diameter at least 2 and valency at least 3. In
the present paper, we return to the work of van Bon and Brouwer [5] and Hem-
meter [14; 15] and show that, starting from each of the known distance-transitive
graphs of diameter and valency at least 3, there are no surprises—the only associ-
ated imprimitive graphs are ones already known and in the literature (see [7]).

The terminology and results will be made precise in the next section. In particu-
lar we give a precise version of Smith’s theorem (following [3]) and describe how
the present results fit into the general problem of classifying all distance-transitive
graphs. In Section 3 we give various general results about the parameters of a
distance-regular graph, particularly those that are imprimitive in one of the two
ways specified by Smith’s theorem. Section 4 discusses various of the geometries,
designs, and codes often used in constructing and describing the graphs under
consideration. Of particular import are the gamma spaces introduced by Higman.
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