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Introduction

The notion of oriented cohomology has been introduced, in various forms and
in various settings, in the work of Panin [10], Levine and Morel [6], and others.
A related notion, that of oriented Borel–Moore homology, appears in [6]. Mo-
canasu [7] has examined the relation of these two notions and, with a somewhat
different axiomatic than appears in either [6] or [10], has given an equivalence of
the two theories; the relation is that the cohomology with supports in a closed sub-
set X of a smooth scheme M becomes the Borel–Moore homology of X.

Our main goal in this paper is to tie all these theories together. Our first step is
to extend results of [10] in order to show that an orientation on a ring cohomology
theory gives rise to a good theory of projective push-forwards on the cohomol-
ogy with supports. This extension of Panin’s results allows us to use the ideas and
results of Mocanasu, which in essence show that many of the properties and struc-
tures associated with the cohomology of a smooth scheme M with supports in a
closed subset X depend only on X; we require resolution of singularities for this
step. We axiomatize this into the notion of an oriented duality theory, which one
can view as a version of the classical notion of a Bloch–Ogus twisted duality the-
ory. The main difference between a general oriented duality theory (H,A) and a
Bloch–Ogus theory is that we do not assume that the Chern class map L �→ c1(L)

satisfies the usual additivity with respect to tensor product of line bundles:

c1(L⊗M) = c1(L)+ c1(M).

This relation is replaced by the formal group law FA(u, v) ∈A(Spec k)[[u, v]] of
the underlying oriented cohomology theory A, defined by the relation

c1(L⊗M) = FA(c1(L), c1(M)).

In fact, the Chern classes c1(L) and formal group law FA are not explicitly given
as part of the axioms but instead follow from the more basic structures—namely,
the pull-back, the projective push-forward, and the projective bundle formula.
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