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1. Introduction

The purpose of this paper is to explain some explicit formulas that one can develop
in the theory of the box spline and the corresponding algorithms of approxima-
tion by functions—in particular, (2.11) and (3.2). The theory of splines is a large
subject, and even the part on the box spline is rather well developed. The reader
should consult the fundamental book by de Boor, Höllig, and Riemenschneider
[7] or the recent notes by Ron [19]. Of this large theory we concentrate on some
remarkable theorems of Dahmen and Micchelli (see [3; 4; 5]) and on the the-
ory of quasi-interpolants and the Strang–Fix conditions, for which we refer to
de Boor [6].

In essence, here we make explicit certain constructs that are already present in
[6]. Thus, from a purely computational point of view, there is probably no real dif-
ference with that paper, yet we believe that the explicit formulas (2.11) and (3.2)
shed a light on the whole procedure. In fact, the main new formula is (3.2) since
(2.11) is essentially in Dahmen–Micchelli (although not so explicit).

We also show how some facts about matroids, which are recalled in an appen-
dix written by A. Björner, give a proof of one of the basic theorems of the theory
on the dimension of a certain space of polynomials describing box splines locally.

2. Preliminaries

2.1. Box Splines

The theory has been developed in the general framework of approximation theory
by splines—in particular, two special classes of functions: the multivariate spline
TX(x) and the box spline BX(x).

Take a finite list X := {a1, . . . , am} of nonzero vectors ai ∈ V = R
s, thought

of as the columns of a matrix A. If X spans R
s, one builds an important function

for numerical analysis, the box spline BX(x), which is implicitly defined by the
formula ∫

Rs

f (x)BX(x) dx :=
∫ 1

0
· · ·

∫ 1

0
f

( m∑
i=1

ti ai

)
dt1 . . . dtm, (2.1)

where f(x) varies in a suitable set of test functions.
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