On Abelian Coverings of Surfaces

E. B. VINBERG

In this paper we consider only orientable compact topological surfaces without boundary, which for brevity are simply called *surfaces*. All autohomeomorphisms of surfaces are presumed to be orientation preserving.

We are interested in a classification of finite abelian coverings of surfaces up to the following equivalence relation: two coverings $\pi_1: T_1 \rightarrow S_1$ and $\pi_2: T_2 \rightarrow S_2$ are *equivalent* if there are homeomorphisms $\varphi: S_1 \rightarrow S_2$ and $\psi: T_1 \rightarrow T_2$ such that the diagram

commutes.

If $\pi: T \to S$ is a Galois covering with Galois group *G* (acting on *T*), then $S \simeq T/G$. Conversely, if *G* is a finite group of autohomeomorphisms of a surface *T* acting on *T* freely (i.e., with trivial stabilizers), then the factorization map $\pi: T \to T/G = S$ is a Galois covering with Galois group *G*.

Thus, instead of considering finite abelian coverings of surfaces one can consider pairs (T, G), where T is a surface and G is a finite abelian group of autohomeomorphisms of G acting on T freely. The foregoing equivalence relation for coverings corresponds to the following notion of isomorphism of pairs: two pairs (T_1, G_1) and (T_2, G_2) are *isomorphic* if there exist a homeomorphism $\psi : T_1 \rightarrow T_2$ and an isomorphism $f : G_1 \rightarrow G_2$ such that the diagram

$$\begin{array}{ccc} T_1 & \stackrel{\psi}{\longrightarrow} & T_2 \\ g & & & \downarrow \\ f(g) \\ T_1 & \stackrel{\psi}{\longrightarrow} & T_2 \end{array}$$

commutes for any $g \in G_1$.

Given a finite abelian group G_0 , one can consider the problem of classification of free G_0 -actions on surfaces. This is not the same as classifying pairs (T, G)with $G \simeq G_0$. To each such pair there corresponds a set of isomorphism classes

Received September 15, 2006. Revision received October 23, 2006.

Research partially supported by Grant no. RFBR-05-01-00988.