On the Solid Hull of the Hardy Space H^p , 0

MIROLJUB JEVTIĆ & MIROSLAV PAVLOVIĆ

1. Introduction

Finding the solid hull $S(H^p)$ of the Hardy space H^p —that is, finding the strongest growth condition the absolute value of the coefficients of H^p functions must satisfy—is an old and difficult problem. It follows from Littlewood's theorem on random power series [7, Thm. A.5, p. 228] that $S(H^p) = H^2$ for $2 . Much later, Kisliakov [12] identified the solid hull of the space <math>H^\infty$. A deep result of Kisliakov shows that $S(H^\infty)$ is also H^2 . In this paper we identify $S(H^p)$ in the case 0 .

The Hardy space H^p (0 is the space of all functions f holomorphicin the unit disc <math>U $(f \in H(U))$ for which

$$\|f\|_p = \lim_{r \to 1} M_p(r, f) < \infty,$$

where, as usual,

$$M_p(r,f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p \, dt\right)^{1/p}, \quad 0$$

and

$$M_{\infty}(r, f) = \sup_{0 \le t < 2\pi} |f(re^{it})|.$$

Throughout this paper, we identify a holomorphic function $f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$ with its sequence of Taylor coefficients $(\hat{f}(n))_{n=0}^{\infty}$. Hardy and Littlewood proved that if f belongs to H^p , 0 , then

$$\sum_{n=0}^{\infty} (n+1)^{p-2} |\hat{f}(n)|^p < \infty$$
(1.1)

and

$$|\hat{f}(n)| = o((n+1)^{1/p-1}), \quad n \to \infty$$
 (1.2)

(see [7] for information and references).

In [13] it was proved that if $f \in H^p$, 0 , then

$$\sum_{n=1}^{\infty} 2^{-n(1-p)} \Big(\sup_{0 \le k \le 2^n} |\hat{f}(k)| \Big)^p < \infty,$$
(1.3)

Received April 20, 2005. Revision received October 13, 2005.

The authors were supported in part by MNZZS Grant no. 144010, Serbia.