Convergence in Capacity of the Perron–Bremermann Envelope

Rafał Czyż

1. Introduction

In [CK1], Cegrell and Kołodziej constructed a sequence of measures in a ball μ_j converging to μ in the weak* topology such that the solutions of the Dirichlet problems

$$(dd^{c}u_{i})^{n} = d\mu_{i}, \quad u_{i} = 0$$
 on the boundary

are uniformly bounded yet u_j does not converge to u, the solution of the Dirichlet problem

$$(dd^c u)^n = d\mu$$
, $u = 0$ on the boundary.

In [CK2] the authors gave conditions on the Monge–Ampère mass of the solutions u_j , with fixed continuous boundary values φ , that guarantee the stability of the complex Monge–Ampère operator. They introduced the set $\mathcal{A}(\mu)$ of all solutions u of the Dirichlet problem $u \in \mathcal{F}(\varphi)$, $(dd^c u)^n = gd\mu$, where μ is a positive finite measure that does not put mass on pluripolar sets and where g varies over all μ -measurable functions satisfying $0 \le g \le 1$. Cegrell and Kołodziej proved that, in $\mathcal{A}(\mu)$, weak^{*} convergence is equivalent to convergence in capacity.

Our main goal is to generalize this statement by admitting a large variation of the boundary data. Let Ω be a bounded domain in \mathbb{C}^n , let f be a bounded function on $\partial\Omega$, and let μ be a positive Borel measure on Ω . Following [BT1], we define

$$PB(f, \mu)$$

= { $u \in \mathcal{F}(g)$: $(dd^c u)^n \ge \mu$, $g \le f$, and g is upper semicontinuous on $\partial \Omega$ }.

We shall refer to the following function as the *Perron–Bremermann envelope*:

$$U(f,\mu) = \sup\{v : v \in \mathsf{PB}(f,\mu)\}.$$

For a fixed positive finite measure μ that does not put mass on pluripolar sets and for a fixed positive constant k, we shall consider the family $\mathcal{D}(\mu, k)$ of plurisubharmonic functions $U(f, gd\mu)$, where g is μ -measurable function such that $0 \le g \le 1$ and where f varies over all upper semicontinuous functions on the boundary such that $|f| \le k$. We shall prove that, in $\mathcal{D}(\mu, k)$, pointwise convergence is equivalent to convergence in capacity.

Received May 11, 2004. Revision received June 24, 2005.

Partially supported by KBN Grant no. 1 P03A 037 26.