The Pointwise Convergence of Möbius Maps

A. F. BEARDON

1. Introduction

In 1957, Piranian and Thron [6] classified the possible limits of a pointwise convergent sequence of Möbius maps acting in the extended complex plane. Here we consider the problem for Möbius maps acting in higher dimensions.

Let g_n be any sequence of Möbius maps of the extended complex plane \mathbb{C}_{∞} onto itself. Let *C* be the set of points *z* at which the sequence $g_n(z)$ converges and, for *z* in *C*, let $g(z) = \lim_{n \to \infty} g_n(z)$.

THEOREM A [6]. Suppose that $C \neq \emptyset$. Then one of the following possibilities occurs:

- (a) $C = \mathbb{C}_{\infty}$, and g is a Möbius map;
- (b) $C = \mathbb{C}_{\infty}$, and g is constant on the complement of one point but not on \mathbb{C}_{∞} ;
- (c) $C = \{z_1, z_2\}$ and $g(z_1) \neq g(z_2)$; or
- (d) g is constant on C.

It is clear that other possibilities can arise in higher dimensions; for example, the sequence of iterates of a nontrivial rotation in \mathbb{R}^3 converges on, and only on, the axis of the rotation and at ∞ . Here, we establish the corresponding result in higher dimension, and we replace the arguments about the coefficients of the g_n used in [6] by geometric arguments. We shall see that, even in two dimensions, the two cases in which *g* takes precisely two values play very different roles in the discussion; in fact, (c) is closer to (a) than to (b). The following similar result for quasiconformal mappings is known [8, pp. 69–73].

THEOREM B. Let D be a subdomain of \mathbb{R}^{k+1} , and let f_n be a sequence of Kquasiconformal mappings of D into \mathbb{R}^{k+1} that converges pointwise on D to a function f. Then one of the following possibilities occurs:

- (a) f is a K-quasiconformal map of D onto some domain D';
- (b) f takes precisely two values on D, one of which is taken at one point only; or
- (c) f is constant on D.

However, Theorem B does not subsume Theorem A, for C need not be a domain; indeed, the problem of characterizing the possible sets C in Theorem A is not

Received November 8, 1999. Revision received April 13, 2004.