The Total Mean Curvature of Submanifolds in a Euclidean Space

ZHONG-HUA HOU

1. Introduction

Let M^n be an *n*-dimensional submanifold in a Euclidean space E^{n+p} of dimension n + p. Denote by *R* the normalized scalar curvature and by *H* the mean curvature of M^n .

 \overline{O} tsuki [O] introduced a kind of curvatures, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p$ for M^2 in E^{2+p} , and showed that they can be used to study the geometry of surfaces in higher-dimensional Euclidean space. Shiohama [S] proved that a complete oriented surface in E^{2+p} with $\lambda_{\alpha} = 0$ (1 ≤ $\alpha \le p$) is a cylinder. Chen [C1] classified compact oriented surfaces in E^{2+p} with $\lambda_p \ge 0$.

In higher-dimensional cases, Chen [C3] introduced the notion of α th scalar curvatures, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$ for M^n in E^{n+p} , and found a relationship between the α th scalar curvatures and the scalar curvature. When n = 2, it reduces to that introduced by Ōtsuki [O]. Chen [C3] also proved that a closed submanifold M^n ($n \geq 3$) in E^{n+p} with $\int_{M^n} (\lambda_1)^{n/2} dV = c_n$ and $\lambda_\alpha = 0$ ($2 \leq \alpha \leq p$) is an *n*-sphere, where c_n is the volume of the unit *n*-sphere and dV denotes the volume element of M^n .

In this paper, we give a further description of the behavior of the α th scalar curvatures and obtain some applications of them. In Section 2, we first prove that $\lambda_{\alpha} \leq 0$ ($2 \leq \alpha \leq p$) for any submanifold M^n in E^{n+p} . Then we prove an inequality involving the integral of λ_1 for closed M^n in E^{n+p} with $R \geq 0$.

Suppose that M^n is closed in E^{n+p} . The total mean curvature of M^n is defined to be the integral $\int_{M^n} H^n dV$. An interesting and outstanding problem is to find the best possible lower bound of this integral in terms of the geometric or topologic invariants of M^n . A special case of this problem is the famous Willmore's conjecture. There have been many results obtained on this problem. In Section 3 we give an estimate of the total mean curvature for closed submanifolds in E^{n+p} with $R \ge 0$. The main result of this paper is the following theorem.

THEOREM 3.1. Let M^n be a closed submanifold in E^{n+p} with $R \ge 0$. Then

$$\int_{M^n} H^n \, dV \ge 2\kappa_n c_{n-1} + \left\{ 1 - 2\kappa_n \left(\frac{c_{n-1}}{c_n} \right) \right\} \int_{M^n} R^{n/2} \, dV,$$

Received July 21, 1997. Revision received November 27, 1997.

Michigan Math. J. 45 (1998).