The Total Mean Curvature of Submanifolds in a Euclidean Space

Zhong-Hua Hou

1. Introduction

Let M^{n} be an n-dimensional submanifold in a Euclidean space E^{n+p} of dimension $n+p$. Denote by R the normalized scalar curvature and by H the mean curvature of M^{n}.

Ōtsuki [O] introduced a kind of curvatures, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}$ for M^{2} in E^{2+p}, and showed that they can be used to study the geometry of surfaces in higher-dimensional Euclidean space. Shiohama [S] proved that a complete oriented surface in E^{2+p} with $\lambda_{\alpha}=0(1 \leq \alpha \leq p)$ is a cylinder. Chen [C1] classified compact oriented surfaces in E^{2+p} with $\lambda_{p} \geq 0$.

In higher-dimensional cases, Chen [C3] introduced the notion of α th scalar curvatures, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}$ for M^{n} in E^{n+p}, and found a relationship between the α th scalar curvatures and the scalar curvature. When $n=2$, it reduces to that introduced by Ōtsuki [O]. Chen [C3] also proved that a closed submanifold $M^{n}(n \geq 3)$ in E^{n+p} with $\int_{M^{n}}\left(\lambda_{1}\right)^{n / 2} d V=c_{n}$ and $\lambda_{\alpha}=0(2 \leq \alpha \leq p)$ is an n-sphere, where c_{n} is the volume of the unit n-sphere and $d V$ denotes the volume element of M^{n}.

In this paper, we give a further description of the behavior of the α th scalar curvatures and obtain some applications of them. In Section 2, we first prove that $\lambda_{\alpha} \leq 0(2 \leq \alpha \leq p)$ for any submanifold M^{n} in E^{n+p}. Then we prove an inequality involving the integral of λ_{1} for closed M^{n} in E^{n+p} with $R \geq 0$.

Suppose that M^{n} is closed in E^{n+p}. The total mean curvature of M^{n} is defined to be the integral $\int_{M^{n}} H^{n} d V$. An interesting and outstanding problem is to find the best possible lower bound of this integral in terms of the geometric or topologic invariants of M^{n}. A special case of this problem is the famous Willmore's conjecture. There have been many results obtained on this problem. In Section 3 we give an estimate of the total mean curvature for closed submanifolds in E^{n+p} with $R \geq 0$. The main result of this paper is the following theorem.

Theorem 3.1. Let M^{n} be a closed submanifold in E^{n+p} with $R \geq 0$. Then

$$
\int_{M^{n}} H^{n} d V \geq 2 \kappa_{n} c_{n-1}+\left\{1-2 \kappa_{n}\left(\frac{c_{n-1}}{c_{n}}\right)\right\} \int_{M^{n}} R^{n / 2} d V
$$

Received July 21, 1997. Revision received November 27, 1997.
Michigan Math. J. 45 (1998).

