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1. Introduction

A closed subset X of R" is of bounded turning if there is a fixed number ¢ > 1
such that any two points a and b of X can be joined by a connected subset A of X
with the diameter d(A) of A satisfying

d(A) < cla —b|. 1)

We will abbreviate bounded turning as BT, and A is ¢-BT if (1) is true with this
particular c. The aim of this paper is to prove the following theorem.

THEOREM 1A. There is co = co(c, n) such that any two points in a c-BT set X
of R" can be joined by a cy-BT arc J of X.

Originally, the notion of bounded turning was introduced for arcs or topological
circles in R2. The BT condition characterizes such arcs or circles that are im-
ages of the standard interval [0, 1] or of the unit circle S! under a quasiconformal
homeomorphism of the plane; see [A] and [R].

Hence this notion has an honorable standing in the theory of quasiconformal
mappings of the plane. In higher dimensions, the BT property is a necessary con-
dition for an arc or a circle to be the image of the standard interval or circle under a
quasiconformal map of R”, but the condition is no longer sufficient. For instance,
the Fox—Artin wild arc in R3 can be made BT. ([Ma] discusses this in the situa-
tion where the Fox—Artin arc is fattened so as to obtain a wild sphere; cf. also [T,
Sec. 14 and Sec. 17].) On the other hand, we might more modestly want to map
only an interval of the real axis onto an arc of R” using a map that would have
the same properties as the restriction of a quasiconformal map of R" to the inter-
val. Such maps are called quasisymmetric maps (see [TV]). Now the BT property
characterizes when such an arc or a circle is a quasisymmetric image of a standard
interval or circle [TV, Thm. 4.9].

The question of whether any two points of BT space X of R” can be joined by
a BT arc of X was raised by J. Viisild. I am indebted to him for this very in-
teresting question—whose answer turned out to be much more complicated than
anticipated—and for some critical comments on my earlier attempts to prove the
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