p-Dirichlet Energy Minimizing Maps into a Complete Manifold

SHIAH-SEN WANG

1. Introduction

Suppose M is a compact m-dimensional \mathbb{C}^2 Riemannian submanifold of \mathbb{R}^Q with (or without) boundary ∂M . Suppose N is an n-dimensional \mathbb{C}^2 complete connected Riemannian submanifold without boundary of some Euclidean space \mathbb{R}^P such that

$$N \subset N_{\tau} = \{ y \in \mathbb{R}^P : \operatorname{dist}(y, N) < \tau(|y|) \}.$$

Here N_{τ} is a τ -tubular neighborhood of N in \mathbb{R}^{P} such that the nearest point projection map

$$\pi: N_{\tau} \to N$$

(i.e., dist $(y, N) = |y - \pi(y)|$ for all $y \in N_{\tau}$) exists and is as smooth as N, and

$$\tau: \mathbb{R}_+ \cup \{0\} \to \mathbb{R}_+$$

is a monotonically decreasing function.

The p-Dirichlet energy functional is the L^p -norm of the gradient defined on the admissible mapping space

$$L^{1,p}(M,N) = \{v \in L^{1,p}(M,\mathbb{R}^P) : v(x) \in N \text{ for } \mathfrak{L}^m \text{ a.e. } x \in M\},$$

where \mathcal{L}^m is the *m*-dimensional Hausdorff measure induced by the metric of M and $1 . We say <math>u \in L^{1, p}(M, N)$ is p-Dirichlet energy-minimizing if

$$\int_{M} |\nabla u|^{p} \le \int_{M} |\nabla v|^{p}$$

for all $v \in L^{1,p}(M,N)$ in the same (relative) homotopy class of u.

Much work has been done regarding the existence and partial regularity of a p-Dirichlet energy-minimizing map, in particular the case when p=2 (see [1] for references). For $\tau > c > 0$, White showed in [8] that there is such a minimizer among maps in the same [p-1]-homotopy class. Furthermore, if the image of a small ball of such a minimizer is contained in a compact subset of N, where N may not be compact, then Hardt and Lin's [4] (or Luckhaus's

Received September 6, 1994. Revision received November 1, 1995.

Research supported in part by NSC 83-0208-M-009-055.

Michigan Math. J. 43 (1996).