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Introduction

A motion of a link consists of an isotopy of the link through its ambient
space that ultimately returns the link to itself. By reducing this notion to the
classical dimension, a classical braid can be considered the trace of a motion
of a point set in a plane.

The set of motions of a link naturally forms a group, called a motion
group. It is not easy to describe the motion group explicitly for a given link;
Goldsmith [Gl; G2] calculated motion groups for a trivial link and torus
links in the 3-sphere. One might conjecture that the motion group of a trivial
link of n-spheres in S”*2 would have the same structure as that in the classi-
cal dimension. In this paper, we give a result (Theorem 2.2) on motions of a
trivial link of two components in general dimensions that might support its
motion group structure.

Using our result on motions of a trivial link, we can define an invariant of
ribbon presentations of knots. A ribbon presentation is geometric informa-
tion defining a knot to be a ribbon, which is introduced and studied in [M2],
[M3], [NN], and [Ya]. Specifically in this paper, we treat 1-fusion ribbon
presentations—that is, a description ® of a knot as obtained from the trivial
link of two n-spheres in $”*2 by connecting them with a pipe. Then the cen-
terline of the pipe links two components of the trivial link, and we can nat-
urally assign a word w in two letters by reading off the linking of the cen-
terline and the trivial link. Associated with this word w, we define a certain
equivalence class W(®) in two leters, and show that this turns out to be an
invariant of 1-fusion ribbon presentations (Theorem 4.1).

A ribbon knot possibly has distinct ribbon presentations. We construct
a ribbon knot having arbitrarily many different ribbon presentations of 1-
fusion in general dimension (Theorem 4.4), and we use our invariant W(®)
for distinguishing those ribbon presentations. The first example of a knot
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