Invariant Subspaces of the Bergman Space and Some Subnormal Operators in $\mathbb{A}_1 \setminus \mathbb{A}_2$

LIMING YANG*

1. Introduction

Let D be the open unit disk in the complex plane \mathbb{C} . The Bergman space $L_a^2(D)$ consists of analytic functions in D with

$$||f||_{L^2_a} = \left(\int_D |f(z)|^2 dA(z)\right)^{1/2} < \infty,$$

where dA denotes the area measure in \mathbb{C} , normalized by a constant factor

$$dA(z) = dx \, dy/\pi$$
.

Let μ be a finite positive Borel measure with compact support, and let spt μ denote the support of μ . Let $P^2(\mu)$ denote the closure in $L^2(\mu)$ of analytic polynomials in z and let S_{μ} denote the operator of multiplication by z on $P^2(\mu)$. The operator S_{μ} is pure if $P^2(\mu)$ has no L^2 summand. A measure with support in the closed unit disk is a reverse Carleson measure for $L^2_q(D)$ if

$$\int_{D} |p|^2 dA \le C \int |p|^2 d\mu$$

for every polynomial p. The set E denotes a compact subset of the unit circle \mathbb{T} with positive Lebesgue measure. Set $\mathbb{T} \setminus E = \bigcup J_n$, where J_n is a connected component. We say that E satisfies the Carleson condition if

$$\sum_{n=1}^{\infty} m(J_n) \log \frac{1}{m(J_n)} < \infty,$$

where m stands for the normalized Lebesgue measure on \mathbb{T} , that is, $dm = (1/2\pi) d\theta$. Every closed arc of \mathbb{T} satisfies the Carleson condition. It is easy to construct a nowhere dense subset of \mathbb{T} satisfying the Carleson condition. Put

$$\mu_E = dA |_D + m |_E. (1.1)$$

The Cauchy transform of a finite measure μ is defined by

Received May 31, 1994. Final revision received December 2, 1994.

^{*}Supported in part by NSF grant DMS-9401234.

Michigan Math. J. 42 (1995).