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1. Introduction

Let D be the open unit disk in the complex plane C. The Bergman space
L2(D) consists of analytic functions in D with
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where dA denotes the area measure in C, normalized by a constant factor
dA(z) =dxdy/x.

Let p be a finite positive Borel measure with compact support, and let
spt » denote the support of u. Let P2(u) denote the closure in L2(n) of
analytic polynomials in z and let S, denote the operator of multiplication
by z on P2(n). The operator S, is pure if P*(p) has no L? summand. A
measure with support in the closed unit disk is a reverse Carleson measure
for L3(D) if
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for every polynomial p. The set E denotes a compact subset of the unit
circle T with positive Lebesgue measure. Set T\ £ =U J,,, where J, is a con-
nected component. We say that E satisfies the Carleson condition if
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where m stands for the normalized Lebesgue measure on T, that is, dm =
(1/27) df. Every closed arc of T satisfies the Carleson condition. It is easy
to construct a nowhere dense subset of T satisfying the Carleson condition.
Put

pe=dA|p+m|g. (1.1)

The Cauchy transform of a finite measure p is defined by
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