Regularity of the Dirichlet Problem in Convex Domains in the Plane

STEPHEN J. FROMM

1. Introduction

Let $\Omega \subset \mathbb{R}^2$ be a bounded convex domain. Then $\partial \Omega$ is Lipschitz but generally not C^1 . Consider the boundary value problem

$$\begin{cases} \Delta u = f & \text{in } \Omega, \\ u|_{\partial\Omega} = 0. \end{cases}$$
 (1)

The regularity of u is limited by the regularity of $\partial\Omega$. In this paper, it is shown that for sufficiently smooth f, u has almost three derivatives in $L^1(\Omega)$. Specifically, we will establish the following theorem concerning the operator G defined by Gf = u.

THEOREM 1.1. If $\Omega \subset \mathbb{R}^2$ is bounded and convex, $0 < \epsilon < 1$, $1 , and <math>f \in L^p_{1-\epsilon}(\Omega)$, then for some C,

$$Gf \in L^p_{3-\epsilon}(\Omega) \quad and \quad ||Gf||_{L^p_{-\epsilon}(\Omega)} \le C||f||_{L^p_{-\epsilon}(\Omega)}.$$
 (2)

The following theorem, stated in [7], summarizes some previous regularity results for problem (1) in bounded convex domains in \mathbb{R}^n , $n \ge 2$.

THEOREM 1.2. If $\Omega \subset \mathbb{R}^n$ is bounded and convex and $n \geq 2$, and either $1 \leq \epsilon \leq 2$ and $1 or <math>\epsilon = 1$ and p = 2, then (2) holds. The Dirichlet boundary condition is satisfied in the sense that $Gf \in W_0^{1,p}(\Omega)$.

The case $\epsilon = 1$ and p = 2 follows from integration by parts and is due to Kadlec [12]; an accessible exposition may be found in the third chapter of [9] or [10]. The case $\epsilon = 1$ and $1 is due to Dahlberg, Verchota, and Wolff (see [7]) and independently to Adolfsson [1]. The proof of the result for <math>\epsilon = 2$ may be found in [7].

In particular, even if $f \in C^{\infty}(\overline{\Omega})$, the best one can say about ∇u and $\nabla^2 u$ is that $\nabla u \in L^{\infty}(\Omega)$ and $\nabla^2 u \in L^2(\Omega)$. In addition, by considering a family of truncated convex sectors in \mathbb{R}^2 with opening angles increasing to π , it

Received April 19, 1993. Revision received April 29, 1994.

The author was supported in part by NSF grant DMS 91-06507. The work described here formed part of the author's doctoral dissertation, [6].

Michigan Math. J. 41 (1994).