Coarsely Quasi-Homogeneous Circle Packings in the Hyperbolic Plane

ZHENG-XU HE

1. Introduction

Let 3 be a triangulation of an open topological disk. By [HS1, Cor. 1.5] (and [Sc]), there is a circle packing $P_{3^{(1)}}$ in the complex plane \mathbb{C} , unique up to Möbius transformations, whose graph is combinatorially equivalent to the 1-skeleton $\mathfrak{I}^{(1)}$ of 3 and whose carrier is either the unit disk U or the whole plane \mathbb{C} . We call the graph $\mathfrak{I}^{(1)}$ hyperbolic if the carrier of $P_{3^{(1)}}$ is U, and parabolic otherwise. For any vertex v in $\mathfrak{I}^{(1)}$, its valence is defined to be the number of edges of $\mathfrak{I}^{(1)}$ with an endpoint at v. The graph $\mathfrak{I}^{(1)}$ is said to have bounded valence if there is a uniform bound on the valences of its vertices.

The 2-manifold $|\mathfrak{I}|$ is naturally endowed with the unique (singular Riemannian) metric so that every 2-simplex is isometric to a unit equilateral triangle in the Euclidean plane. With this metric, there is also a well-defined conformal structure in the manifold. By Koebe's uniformization theorem, $|\mathfrak{I}|$ is conformally equivalent to either U or \mathbb{C} . When $\mathfrak{I}^{(1)}$ has bounded valence, the ring lemma of [RS] (see Lemma 2.2 below) implies that $|\mathfrak{I}|$ is conformally equivalent to U if and only if $\mathfrak{I}^{(1)}$ is hyperbolic. In the following, we will consider $|\mathfrak{I}|$ as both a metric space and as a Riemann surface.

Let $K \ge 1$ be a constant. A (not necessarily continuous) map $f: X \to Y$ between two metric spaces is called a *coarse K-quasi-isometry* if for each pair of points u and v in X,

$$\frac{d(u,v)}{K} - K \le d(h(u), h(v)) \le Kd(u,v) + K,$$
(1.1)

and if for each point w in Y there is some u in X such that $d(w, f(u)) \le K$, where (by an abuse of notation) we have used d to denote the metrics in both X and Y. A metric space X will be called *coarsely quasi-homogeneous* if there is some $K \ge 1$ such that for each pair of points u and v in X there is a coarse K-quasi-isometry $h: X \to X$ with h(u) = v. Our main theorem is as follows.

Theorem 1.1. Let \Im be a triangulation of an open topological disk such that $\Im^{(1)}$ is hyperbolic and of bounded valence, and let $P_{\Im^{(1)}}$ be a circle packing whose carrier is U and whose graph is combinatorially equivalent to $\Im^{(1)}$.

Received September 28, 1992. Revision received March 24, 1993.

The author's work was supported by NSF grant DMS-9396227 and the Alfred P. Sloan Foundation.

Michigan Math. J. 41 (1994).