On CR Mappings of Real Quadric Manifolds

ALEXANDR SUKHOV

0. Introduction

According to the well-known theorem of Alexander [Al], each local CR diffeomorphism of the real unit sphere in \mathbb{C}^n , for n > 1, extends to a complex rational mapping on all \mathbb{C}^n . This important result was generalized by several authors in different directions. Thus, Tumanov [Tu], Tumanov and Henkin [TH], and Forstnerič [Fo] transferred it to CR mappings of real quadric Cauchy-Riemann manifolds of an arbitrary codimension in \mathbb{C}^n . In the present note we generalize these results. Our main tool is the reflection principle due to Lewy [Le], Pinchuk [P1], and Webster [W1; W2; W3].

I express my thanks to S. Pinchuk for his interest in this work.

1. Result

We denote coordinates in \mathbb{C}^n by (z, w), where $z \in \mathbb{C}^k$, $w \in \mathbb{C}^d$, k+d=n, and k, d>0. Let also $\langle z, \zeta \rangle = \sum_{j=1}^k z_j \zeta_j$. Consider in \mathbb{C}^n a real generic manifold of the form

$$w_j + \bar{w}_j = \langle L_j(z), \bar{z} \rangle, \quad j = 1, \dots, d,$$
 (1.1)

where each $L_j: \mathbb{C}^k \to \mathbb{C}^k$ is a C-linear hermitian operator. To simplify the notation we shall write (1.1) in the form

$$w + \bar{w} = \langle L(z), \bar{z} \rangle, \tag{1.2}$$

setting

$$\langle L(z), \bar{z} \rangle = (\langle L_1(z), \bar{z} \rangle, \dots, \langle L_d(z), \bar{z} \rangle). \tag{1.3}$$

A manifold M of the form (1.2) is said to be a *quadric* Cauchy-Riemann manifold (in short, quadric) of real codimension d in \mathbb{C}^n .

Let $T_p^c(M)$ denote the complex tangent space of M at $p \in M$. Recall that $T_p^c(M) = T_p(M) \cap i(T_p(M))$, where $T_p(M)$ is a real tangent space and $i = \sqrt{-1}$. The complex dimension of $T_p^c(M)$ does not depend on p in M, and is equal to k; it is called the CR dimension of M. The vector-valued (with values in \mathbb{R}^d) hermitian quadratic form (1.3), defined on $\mathbb{C}^k \cong \{(z, w) : w = 0\} = 0$